Overview

1. Illustrate a fundamental choice: Benefits vs. Costs
2. Develop formal approach and notation
3. Introduce basic decision criterion: Prospective Benefit, $B(t)$, and Prospective Cost, $C(t)$

Example

Assume a 1-year magazine subscription costs $20 and a 2-year subscription costs $35. As a special offer, these prices are guaranteed for the next four years if you subscribe today.

Which would you prefer?

<table>
<thead>
<tr>
<th></th>
<th>1-Yr</th>
<th>2-Yr</th>
<th>Diff. (2Yr-1Yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>-20</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-20</td>
<td>+20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-20</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-20</td>
<td>+20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fundamental choice: Benefits, Costs

<table>
<thead>
<tr>
<th></th>
<th>Series</th>
<th>Series</th>
<th>Diff. (2-1) = Series - Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume $i = 0.03$ per year

- $F_B = 20(1.03)^2 + 20 = $41.22
- $F_C = 15(1.03)^3 + 15(1.03) = $31.84

Since $F_B > F_C$, choose 2-Yrs

A more formal approach

An economic decision criterion includes both:
1. Measure of Worth
2. Decision Rule
A special interest rate: MARR

\[i = \text{minimum attractive rate of return (MARR)} \]
also known as --
- marginal growth rate,
- discount rate,
- cutoff rate,
- hurdle rate,
- yield,
- among others

The role of the MARR

<table>
<thead>
<tr>
<th>(t)</th>
<th>(A_{jt})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
</tbody>
</table>

Interest Rate = 5%

An economical investment?

If MARR < 5%; Yes
If MARR > 5%; No

Values of the MARR

Typically, the MARR for:
1) individuals represents the min. attractive opportunities to invest in money markets
2) corporations represents the min. attractive opportunities to invest in the company

Some notation

\[A_{jt} = \text{net cash flow, where:} \]
\[j = \text{index on opportunities} \]
\[A_{jt} > 0 \text{ is a net receipt,} \]
\[A_{jt} < 0 \text{ is a net expense, and} \]
\[A_{jt} = 0 \text{ for} \ t < 0 \text{ and} \ t > N \]
\[A_{jt} = B_{jt} - C_{jt} \text{ where:} \]
\[B_{jt} = A_{jt} \text{ if} \ A_{jt} > 0, \text{ else} B_{jt} = 0, \]
\[C_{jt} = -A_{jt} \text{ if} \ A_{jt} < 0, \text{ else} C_{jt} = 0 \]

Basic Criterion: Benefits and Costs

Measure of Worth

\[B_j(i) = \sum_{t=0}^{N} B_{jt}(1+i)^{-t}, \text{ where} \]
\[i = \text{MARR} \]

\[C_j(i) = \sum_{t=0}^{N} C_{jt}(1+i)^{-t} \]

Typically, \(T = 0 \) or \(N \)

Decision Rule

Accept (prefer) \(j \) if \(B_j(i) > C_j(i) \), otherwise reject (not prefer) \(j \)

An example

A manufacturer is considering buying 10 robots to spray paint its product on the assembly line. Each robot costs $200,000 and has an expected life of 9 years. The cost to install all the robots is $45,000. Each robot is expected to reduce labor costs by $50,000 a year but will increase energy costs by $15,000 a year.

If the MARR = 10% per year, are the robots economical?
Fundamentals of an Economic Decision

... an example

<table>
<thead>
<tr>
<th>t</th>
<th>Problem Data</th>
<th>A_{RI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10(-200K)-45K</td>
<td>-2,045K</td>
</tr>
<tr>
<td>1</td>
<td>10(+50K-15K)</td>
<td>350K</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>350K</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>350K</td>
</tr>
</tbody>
</table>

Fundamentals of an Economic Decision

... an example

<table>
<thead>
<tr>
<th>t</th>
<th>A_{RI} = B_{RI} - C_{RI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 - 2,045K</td>
</tr>
<tr>
<td>1</td>
<td>350K</td>
</tr>
<tr>
<td>2</td>
<td>350K</td>
</tr>
<tr>
<td>...</td>
<td>N=9</td>
</tr>
</tbody>
</table>

$B_{R}(.1) = 350(F/A,.1,9) = \$4752.8K$

$C_{R}(.1) = 2045(F/P,.1,9) = \$4822.0K$

Reject; note only 1.4% difference!

Fundamentals of an Economic Decision

Summary

◆ A fundamental choice: Benefits vs. Costs
◆ Formal approach and notation
 ➔ Criterion = MOW + DR
 ➔ MARR
 ➔ A_{j0}, B_{j0}, C_{j0}
◆ Basic decision criterion:
 ➔ $B_{j}(i), C_{j}(i)$

Future Worth, Present Worth, Annual Worth

Overview

Three classic economic criteria based on worth:
◆ Future Worth, $FW_{j}(i)$
◆ Present Worth, $PW_{j}(i)$
◆ Annual Worth, $AW_{j}(i)$

Future Worth

Measure of Worth

$FW_{j}(i) = B_{j}(i) - C_{j}(i)$, where $i = MARR$

$FW_{j}(i) = \sum_{t=0}^{N} B_{j}(1+i)^{T-t} - \sum_{t=0}^{N} C_{j}(1+i)^{T-t}$

$FW_{j}(i) = \sum_{t=0}^{N} [B_{j} - C_{j}](1+i)^{T-t}$

$FW_{j}(i) = \sum_{t=0}^{N} A_{j}(1+i)^{T-t}$, Typically $T = N$

Decision Rule

Accept j if $FW_{j}(i) > 0$, else reject
A manufacturer is considering buying 10 robots to spray paint its product on the assembly line. Each robot costs $200,000 and has an expected life of 9 years. The cost to install all the robots is $45,000. Each robot is expected to reduce labor costs by $50,000 a year but will increase energy costs by $15,000 a year. If the MARR = 10% per year, are the robots economical?

\[t \quad A_{R_t} = B_{R_t} - C_{R_t} \]

<table>
<thead>
<tr>
<th></th>
<th>Route 1</th>
<th>Route 2</th>
<th>Route 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-75K</td>
<td>-125K</td>
<td>-100K</td>
</tr>
<tr>
<td>1-14</td>
<td>23K</td>
<td>28K</td>
<td>25.5K</td>
</tr>
<tr>
<td>15</td>
<td>68K</td>
<td>53K</td>
<td>60.5K</td>
</tr>
</tbody>
</table>

\[PW_{R1}(0.08) = -75K + 23K(P/A,0.08,14) + 68K(P/F,0.08,15) = +136.1K \]

\[PW_{R2}(0.08) = +122.6K \]

\[PW_{R3}(0.08) = +129.3K \]

Choose R1?: \(PW_{R1} > PW_{R2}; PW_{R3} \)?
An equivalent decision rule

For any two alternatives \(j = A_1, A_2 \):
\[PWA_{A1-A2}(i) = PWA_{A1}(i) - PWA_{A2}(i) \]

Thus, equivalent decision rule is:
prefer \(A_1 \) over \(A_2 \) when
\[PWA_{A1}(i) > PWA_{A2}(i) \]
and no capital rationing!
(Same is true for Future Worth)

Example, revisited (again)

\[
\begin{array}{cccc}
 t & A_{R1,t} & A_{R2,t} & A_{R3,t} \\
 0 & 75K & 125K & 100K \\
 1-14 & 23K & 28K & 25.5K \\
 15 & 68K & 53K & 60.5K \\
\end{array}
\]

\[
\begin{align*}
AW_{R1}(.08) &= +15.9K > 0 \\
AW_{R2}(.08) &= +14.3K > 0 \\
AW_{R3}(.08) &= +15.1K > 0 \\
AW_{R2-R1}(.08) &= -1.6K < 0 \\
AW_{R3-R1}(.08) &= -0.8K < 0
\end{align*}
\]

\(AW \) also has equivalent decision rule

Summary

Three classic economic criteria based on worth:
- Future Worth, \(FW_j(i) \)
- Present Worth, \(PW_j(i) \)
- Annual Worth, \(AW_j(i) \)

Internal Rate of Return

Overview

- Definition
- Illustrative examples
- Potential problems unique to this criterion
Measure of Worth (most common definition)

\[i^* = \{ i \mid \text{PW}_j(i) = 0 \} \]

or

\[i^* = \{ i \mid \text{FW}_j(i) = 0 \} \]

Decision Rules

Accept investment \(j \)
if \(i^* > \text{MARR} \), else reject

Accept borrowing \(j \)
if \(i^* < \text{MARR} \), else reject

Example: An investment

Assume you can purchase a photocopy machine for $20,000. Its estimated life and salvage value is 5 years and $5,000, respectively. It will save $7,000 a year in outside vendor copying, but it will cost $1,000 a year in maintenance, repair, paper, ink, etc.

Assume the MARR is 9% per year. What is the IRR?

Example: The net cash flows

\[
\begin{array}{cccc}
 t & A_{ct} \\
 0 & -20,000 \\
 1 & 6,000 \\
 2 & 6,000 \\
 3 & 6,000 \\
 4 & 6,000 \\
 5 & 11,000 \\
\end{array}
\]

\[
\begin{align*}
\text{PW}_C(0.15) &= 2598.81 \\
\text{PW}_C(0.25) &= -2225.92 \\
\text{PW}_C(0.199021) &= +0.00089211 \\
\end{align*}
\]

\[i_C^* \approx 0.20 > 0.09 \]

Example: A borrowing

Assume you can finance the copier with a loan from the supplier. For a down payment of $5,000, you can finance the remainder. The loan is to be repaid in 5 years with annual payments of $3,561.00.

What is the interest rate (IRR) of the loan?

Example: The net cash flows

\[
\begin{array}{cccc}
 t & A_{ct} \\
 0 & +15,000 \\
 1 & -3,561 \\
 2 & -3,561 \\
 3 & -3,561 \\
 4 & -3,561 \\
 5 & -3,561 \\
\end{array}
\]

\[
\begin{align*}
\text{PW}_L(i) &= 15,000 - 3561(P/A,i,5) \\
i_L^* \approx 0.06 < 0.09 \\
\end{align*}
\]

Investment? Borrowing?

\[
\begin{array}{cccc}
 t & 1-\text{Yr} & 2-\text{Yr} & A_{2Yr-1Yr} & A_{1Yr-2Yr} \\
 0 & -20 & -35 & -15 & +15 \\
 1 & -20 & +20 & -20 \\
 2 & -20 & -35 & -15 & +15 \\
 3 & -20 & +20 & -20 \\
 4 & & & \\
\end{array}
\]

\[
\begin{align*}
\text{PW}_{2:1}(i^*) &= -15+20(1+i)^{-1} -15(1+i)^{-2} +20(1+i)^{-3} = 0 \\
i_{2:1}^* & = 0.335 > \text{MARR} = 0.03; \text{ Accept? Reject?} \\
\text{PW}_{1:2}(i^*) &= +15-20(1+i)^{-1} +15(1+i)^{-2} -20(1+i)^{-3} = 0 \\
i_{1:2}^* & = 0.335 > \text{MARR} = 0.03; \text{ Accept? Reject?} \\
\end{align*}
\]
Internal Rate of Return

What is an “investment?”

<table>
<thead>
<tr>
<th>Time</th>
<th>Capital Invested</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-20,000</td>
</tr>
<tr>
<td>1</td>
<td>6,000</td>
</tr>
<tr>
<td>2</td>
<td>6,000</td>
</tr>
<tr>
<td>3</td>
<td>6,000</td>
</tr>
<tr>
<td>4</td>
<td>6,000</td>
</tr>
<tr>
<td>5</td>
<td>11,000</td>
</tr>
</tbody>
</table>

Capital remains invested at all times

What is a “borrowing?”

<table>
<thead>
<tr>
<th>Time</th>
<th>Capital Borrowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+15,000</td>
</tr>
<tr>
<td>1</td>
<td>-3,561</td>
</tr>
<tr>
<td>2</td>
<td>-3,561</td>
</tr>
<tr>
<td>3</td>
<td>-3,561</td>
</tr>
<tr>
<td>4</td>
<td>-3,561</td>
</tr>
<tr>
<td>5</td>
<td>-3,561</td>
</tr>
</tbody>
</table>

Capital remains borrowed at all times

Accept or reject if MARR = 0.15?

<table>
<thead>
<tr>
<th>Time</th>
<th>Capital Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-5,000</td>
</tr>
<tr>
<td>1</td>
<td>3,000</td>
</tr>
<tr>
<td>2</td>
<td>-1,400</td>
</tr>
<tr>
<td>3</td>
<td>-1,000</td>
</tr>
<tr>
<td>4</td>
<td>8,400</td>
</tr>
</tbody>
</table>

\[j^* = 0.20 > 0.15, \text{ accept} \]

Accept or reject if MARR = 0.15?

<table>
<thead>
<tr>
<th>Time</th>
<th>Capital Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>-1,200</td>
</tr>
<tr>
<td>2</td>
<td>900</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>-3,300</td>
</tr>
</tbody>
</table>

\[j^* = 0.10 < 0.15, \text{ accept} \]

Yet another example . . .

It is common in the oil industry to “acidize” a well to increase production. Acids are pumped into the well to cleanse the porous rock near the bottom of the well to increase oil production.

Assume \(j = 0 \) represents “do nothing,” and \(j = 1 \) represents acidizing. MARR = 20%.

\[i_{1-0}^* = 1.35 > 0.20; \text{ and} \]
\[i_{1-0}^* = 0.0 < 0.20 \]
Internal Rate of Return

One final example... MARR = 0.15

<table>
<thead>
<tr>
<th>t</th>
<th>A_{A1,t}</th>
<th>A_{A2,t}</th>
<th>A_{A2-A1,t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-10,000</td>
<td>-20,000</td>
<td>-10,000</td>
</tr>
<tr>
<td>1</td>
<td>5,500</td>
<td>-5,500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5,500</td>
<td>-5,500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5,500</td>
<td>40,000</td>
<td>+34,500</td>
</tr>
</tbody>
</table>

\[i^*_j = 0.30 \quad 0.26 \quad 0.24 \]

\[PW_j(0.15) = 2,558 \quad 6,300 \quad +3,742 > 0 \]

Note: \(i^*_j A_{A1-A2} \neq i^*_j A_{A1} - i^*_j A_{A2} \); IRR does not have an equivalent decision rule!

Summary

- **Definition**
- Two decision rules
- **Illustrative examples**
 - Investment
 - Borrowing
- **Mixed Investment/Borrowing**
- **No equivalent decision rule**

Benefit/Cost Ratio, and Payback Period

Overview

- **Benefit/Cost Ratio**
- **Payback Period**
 - (a secondary criterion)

Notes:
- The presentation on Benefit/Cost Ratio is based on the “strict” definition of benefits and costs. See text for the “flexible” definition.
- The definition of Payback Period is a conceptual one, and some situations can require a more detailed definition.

Benefit/Cost Ratio

Measure of Worth

\[B_j(i) = \sum_{t=0}^{N} B_j(1+i)^{-t} \]

\[BCR_j(i) = \frac{B_j(i)}{C_j(i)} = \sum_{t=0}^{N} C_j(1+i)^{-t} \]

where \(i = MARR \) & \(T = 0 \) or \(N \)

Decision Rule

Accept (prefer) \(j \) if \(BCR_j(i) > 1.0 \), otherwise reject (not prefer) \(j \).

An example... MARR = 0.10

<table>
<thead>
<tr>
<th>t</th>
<th>A_{A1,t}</th>
<th>A_{A2,t}</th>
<th>A_{A2-A1,t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2,000</td>
<td>-3,000</td>
<td>-1,000</td>
</tr>
<tr>
<td>1</td>
<td>900</td>
<td>1,200</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>900</td>
<td>1,200</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>900</td>
<td>1,200</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>900</td>
<td>1,200</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>900</td>
<td>1,200</td>
<td>300</td>
</tr>
</tbody>
</table>

\[BCR_{(0.10)} = 1.71 \quad 1.52 \quad 1.137 > 1 \]

\[PW_{(0.10)} = 1,412 \quad 1,549 \quad +137 > 0 \]

Note: BCR has no equivalent decision rule!
Payback Period (Secondary Criterion)

Measure of “Worth” (actually, liquidity)

\[N_j^* = \{ N \mid \sum_{t=0}^{N} A_{jt}(1+i)^{-t} = 0 \} \]

Decision Rule
Accept investment \(j \) if \(N_j^* < N_{\text{max}} \), else reject (for multiple alternatives, prefer the shortest payback period).

Benefit/Cost Ratio, and Payback Period

<table>
<thead>
<tr>
<th>(t)</th>
<th>(A_{A_1,t})</th>
<th>(A_{A_2,t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-9,760</td>
<td>-10,000</td>
</tr>
<tr>
<td>1</td>
<td>5,000</td>
<td>4,600</td>
</tr>
<tr>
<td>2</td>
<td>5,000</td>
<td>4,600</td>
</tr>
<tr>
<td>3</td>
<td>5,000</td>
<td>4,600</td>
</tr>
<tr>
<td>4</td>
<td>5,000</td>
<td>4,600</td>
</tr>
<tr>
<td>5</td>
<td>5,000</td>
<td>4,600</td>
</tr>
</tbody>
</table>

\(i_{A_1^*} = 0.43 \)
\(\text{PW}_{A_1}(0.25) = 3,686 \)
\(N_{A_1^*} = 3 \)

Benefit/Cost Ratio, and Payback Period

<table>
<thead>
<tr>
<th>(t)</th>
<th>(A_{A_2,t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-10,000</td>
</tr>
<tr>
<td>1</td>
<td>-1994</td>
</tr>
<tr>
<td>2</td>
<td>-5275</td>
</tr>
<tr>
<td>3</td>
<td>-7900</td>
</tr>
<tr>
<td>4</td>
<td>-7900(1.25) = -6594</td>
</tr>
<tr>
<td>5</td>
<td>-7900(1.25) = -6594</td>
</tr>
<tr>
<td></td>
<td>-10000(1.25) = -12500</td>
</tr>
</tbody>
</table>

\(3 < N_{A_2^*} \leq 4 \)

Summary

- Fundamental concepts of a decision
 - Benefit, \(B_j(i) \), & Cost, \(C_j(i) \)
- Five classic criteria:
 - Future Worth, \(FW_j(i) \)
 - Present Worth, \(PW_j(i) \)
 - Annual Worth, \(AW_j(i) \)
 - Internal Rate of Return, \(i_j^* \)
- Popular secondary criterion:
 - Payback Period, \(N_j^* \)

Home Mortgage Refinancing - A Case Study

- Homeowner’s situation
- Selecting a criterion
- Existing loan
- Refinancing option
- Defining a new alternative
- Analysis using break-even internal rate of return
Home Mortgage Refinancing - A Case Study

Homeowner's situation

- GT faculty member recently bought a home with a 30-year mortgage
- Refinancing opportunity available at lower interest rate, 15-year period
- Question: Refinance?
 - Lower interest rate
 - Transaction (closing) costs
 - Higher monthly payment because of shorter term

Selecting a criterion

- FW, PW, AW: what MARR?
- B/C ratio: classification of B?
- IRR: long periods, 180 and 360
 Applied to 60-month period
- Another criterion:
 Future cash amount
 New alternative defined for use with this criterion

Existing loan (Option 1)

- Initial balance, $P = $202,000
- $N = (30)(12) = 360$ months
- $i = 9%/12 = 0.75\%$ per month
- Monthly payment for principal and interest ($P&I)$:
 $A = P(A/P, 0.75\%, 360)$
 $= 202,000(0.00804623)$
 $= $1,625.34

New loan (Option 2)

The new loan would be for the same amount as the existing loan, but at a lower interest rate of 0.625\% per month, and for a period of 15 years. Also, there would be a $2,000 transaction fee (closing cost).

New loan (Option 2)

$P = $202,000

$A = $1,872.56/month
A includes $P&I$
How to compare?

Very few people live in a house long enough to pay off a 30-year mortgage.

One way to compare the two alternatives is to calculate the remaining loan balances after 5, 10, and 15 years.

Existing loan (1), after 5 yrs.

\(P = 202,000 \)

\(i = 0.75\% \text{ per month} \)

\(A = 1,625.34/\text{month} \)

\(N = 300 \text{ months} \)

- After 5 years of payments, the remaining loan balance is:
 \(P = A(P/A, 0.75\%, 300) = 1,625.34(119.1616) = 193,678 \)

- After 10 years: $180,648
- After 15 years: $160,248
- Slow decline is typical of 30-year mortgages

New loan (2), after 5 yrs.

\(P = 202,000 \)

\(i = 0.625\% \text{ per month} \)

\(A = 1,872.56/\text{month} \)

\(N = 120 \text{ months} \)

- After 5 years of payments, the remaining loan balance is:
 \(P = A(P/A, 0.625\%, 120) = 1,872.56(84.2447) = 157,753 \)

- After 10 years: $93,451
- After 15 years: **zero**!
 Loan is completely paid off.

Remaining loan balance (1)

- After 5 years of payments, the remaining loan balance is:
 \(P = A(P/A, 0.75\%, 300) = 1,625.34(119.1616) = 193,678 \)

- After 10 years: $180,648
- After 15 years: $160,248
- Slow decline is typical of 30-year mortgages

Remaining loan balance (2)

- After 5 years of payments, the remaining loan balance is:
 \(P = A(P/A, 0.625\%, 120) = 1,872.56(84.2447) = 157,753 \)

- After 10 years: $93,451
- After 15 years: **zero**!
 Loan is completely paid off.

Apples and oranges (1 vs. 2)

The difficulty with the previous comparisons is the difference in the cash flows paid to the mortgage company.

Solution? Construct a hypothetical alternative (Option 3) where the homeowner keeps the existing mortgage contract but replicates the cash flow of the new loan. The excess payments reduce the principal balance. Then, a comparison can be made on remaining loan balances.
Home Mortgage Refinancing - A Case Study

Hypothetical alternative (3)

- \(P = \$202,000 \)
- \(i \) remains 0.75% per month
- \(A = \$1,625.34 + 247.22 \)
- \(= \$1,872.56/\text{month} \)

\(\$2,000 \)

\[N = ? \]

Effect on loan balance (3)

- After 5 years the \(\$2,000 \)
 would have the effect of reducing the loan balance by
 \[F = P(F/P, 0.75\%, 60) \]
 \[= \$2,000(1.56568) = \$3,131 \]
- The effect of the \(\$247.22 \)
 per month extra payment is
 \[F = A(F/A, 0.75\%, 60) \]
 \[= \$247.22(75.4241) = \$18,646 \]

Compute loan balance (3)

- Effect of the \(\$2,000 \) after
 - 10 years: \(\$4,903 \)
 - 15 years: \(\$7,676 \)
- Effect of the \(\$247.22 \) after
 - 10 years: \(\$47,841 \)
 - 15 years: \(\$93,549 \)
- Next step: compute remaining loan balances for hypothetical alternative (Option 3)

Rate-of-return analysis

Define Option 4:
the homeowner deposits the excess \(\$2,000 \) and \(\$247.22 \) per month into an account that grows in 5 years to \(\$35,925 \), which is the difference after 5 years between Options 1 and 2:
\[\$193,678 - \$157,753. \]
Home Mortgage Refinancing - A Case Study

Rate-of-return analysis

\[F = \$35,925 \]

\[A = \$247.22/\text{mo.} \]

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[60 \]

\[\$2,000 \]

Rate-of-return = 2.084\% per month

Result: \[i^* = 2.084\% / \text{month} \]

Effective annual rate is

\[(1 + 0.0284)^{12} - 1 = 28\% \]

This is a rather high rate that might not be achieved with a commercial account. So the new loan is preferred.

Summary

- New criterion: future cash
 - Existing loan
 - New loan
 - Hypothetical alternative
- Rate-of-return analysis for 5-year period on difference between alternatives

Multiple Alternatives - Part 1

Overview

- Define relationships possible among investment alternatives
- Present typical examples
- Demonstrate selection process for investment alternatives
 - PW for independent investments
 - Rate-of-return for mutually exclusive investments

Multiple Alternatives - Part 1

Definition

Independent alternatives:

Investment alternatives where the selection of one does not restrict the selection of another.
Multiple Alternatives - Part 1

Example 1

A Replace gas-fired boiler with a more fuel-efficient unit

B Replace plant electric control system with “smart” system that reduces peak load from 450 to 350 kW

Definition

Mutually exclusive alternatives:

Investment alternatives where the selection of one precludes the selection of another.

Example 2

A Replace gas-fired boiler with a more fuel-efficient unit from Manufacturer X

B Replace gas-fired boiler with a more fuel-efficient unit from Manufacturer Y

Options are:

Φ Do Nothing

A Replace gas-fired boiler with unit from Mfg. X

B Replace gas-fired boiler with unit from Mfg. Y

Consider: Φ, A, B

Definition

Contingent alternatives:

Investment alternatives where the selection of one depends on the selection of another.
Multiple Alternatives - Part 1

Example 3

A Install stand-by 350 kW diesel generator for refrigeration system

B Install “smart” electric control system that reduces peak load from 450 to 350 kW

A by itself doesn’t make much sense, so A depends on B.

Example 3

Options are \(\Phi, B, (A + B) \)

\(\Phi \) Do Nothing

B Install “smart” electric control system that reduces peak load from 450 to 350 kW (benefit from rate reduction based on peak use)

\((A + B) \) Install generator plus smart control system (benefit from rate reduction based on peak use plus rate reduction based on interruptible supply)

Example 4

A Company Z gains the right to distribute its products in zone A

B Company Z gains the right to distribute its products in zone B

(A + B) Company Z gains the right to distribute its products in zones A and B

We would expect some savings in transport costs when serving both zones.

Definition

Complementary alternatives:

Two or more alternatives are complementary when the relative worth of their combination is more than the sum of the individual relative worths.
Multiple Alternatives - Part 1

Example 4

Consider these options:

Φ Do Nothing
A Distribute products in zone A
B Distribute products in zone B
C Distribute products in both zones A and B, with cost reduction reflecting combined transport operation

Example 5

A Replace gas-fired boiler for heating system with a more fuel-efficient unit
B Install system of sensors and closers at doors, windows, and other openings to reduce heat loss during winter season
A + B technically feasible, but the savings are not additive
Consider: Φ, A, B, and C based on A + B reflecting loss of savings

Example 6

Consider:

Φ, A, B, (A + B)

PW_A(15%) = 0 by definition
PW_A(15%) = −300,000
+ 115,000(P/A, 15%, 4)
= −300,000 + 115,000(2.85498)
= $28,323 > 0, so A is acceptable

PW_B(15%) = −400,000
+ 125,000(P/A, 15%, 5)
= −400,000 + 125,000(3.35216)
= $19,019 > 0, so B is acceptable

PW_A+B(15%) = 28,323 + 19,019
= $47,342 > 0, so (A + B) is acceptable

Result: Select (A + B)

(Note: if mutually exclusive, select A)

Reminder: To compute PW of a combination of two or more independent investment alternatives, simply add the PW values of the individual investments.)
Example 7

Mutually exclusive alternatives C and D:

<table>
<thead>
<tr>
<th>Alternative</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>$200,000</td>
<td>$260,000</td>
</tr>
<tr>
<td>Project life</td>
<td>6 years</td>
<td>6 years</td>
</tr>
<tr>
<td>Annual net cash flow</td>
<td>$85,000</td>
<td>$125,000</td>
</tr>
<tr>
<td>MARR</td>
<td>15%</td>
<td></td>
</tr>
</tbody>
</table>

No budget constraint

Use Rate-of-return to make decisions

Which alternative to select?

Consider:

\[PWC(i) = -200,000 + 85,000 \cdot \left(\frac{P}{A}, i, 6 \right) \]

\[\left(\frac{P}{A}, i, 6 \right) = \frac{200,000}{85,000} = 2.35294 \]

so \(i^* = 35.7\% > 15\% \), so accept C for now

\[PWD_C(i) = -(260,000 - 200,000) + (125,000 - 85,000) \cdot \left(\frac{P}{A}, i, 6 \right) \]

\[\left(\frac{P}{A}, i, 6 \right) = \frac{60,000}{40,000} = 1.5 \]

so \(i^* = 63.1\% > 15\% \), so accept D

Final choice is D

(If independent, select both since \(i^*_D = 42.3\% \))

Summary

- Defined relationships possible among investment alternatives
 - Independent
 - Mutually exclusive
 - Contingent
 - Complementary
 - Competitive
- Example of independent alternatives, with PW criterion
- Example of mutually exclusive alternatives, with IRR criterion

Multiple Alternatives - Part 2

Overview

- Present method for defining combinations of independent and mutually exclusive investment alternatives
- Demonstrate selection process for more involved situations
 - Rate-of-return
 - B/C ratio

Procedure

Combination alternatives:

Construct logical combinations of alternatives that are technically feasible.

Eliminate those that exceed the budget constraint, if any.
Multiple Alternatives - Part 2

Example 1

A manufacturing company is trying to expand its market into some new areas: E, F, and G.

There are a number of potential distributors for serving each of the new areas:

- area E: distributor V, W, and X
- area F: distributor X, Y, and Z
- area G: distributor V, W, and Z

Example 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E, (\phi)</td>
<td>0</td>
<td>F, (\phi)</td>
</tr>
<tr>
<td>E, V</td>
<td>60,000</td>
<td>F, X</td>
</tr>
<tr>
<td>E, W</td>
<td>80,000</td>
<td>F, Y</td>
</tr>
<tr>
<td>E, X</td>
<td>90,000</td>
<td>F, Z</td>
</tr>
</tbody>
</table>

Example 1

Constraint 1: There can be only one distributor in an area.

Constraint 2: No distributor can serve in two or more areas, to prevent stretching sales staff.

Constraint 3: There is a limit on investment of $150,000 at the inception of the expansion program.

Example 1 (a)

<table>
<thead>
<tr>
<th>Combin. Inv.</th>
<th>OK?</th>
<th>Combin. Inv.</th>
<th>OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, (\phi), F, G, V</td>
<td>0</td>
<td>E, F, G, V</td>
<td>50</td>
</tr>
<tr>
<td>E, V</td>
<td>60</td>
<td>E, V, F, G, V</td>
<td>110</td>
</tr>
<tr>
<td>E, W</td>
<td>80</td>
<td>E, W, F, G, V</td>
<td>130</td>
</tr>
<tr>
<td>E, X</td>
<td>90</td>
<td>E, X, F, G, V</td>
<td>140</td>
</tr>
<tr>
<td>E, F, G, V</td>
<td>130</td>
<td>E, F, G, V</td>
<td>145</td>
</tr>
</tbody>
</table>

Example 1 (b)

<table>
<thead>
<tr>
<th>Combin. Inv.</th>
<th>OK?</th>
<th>Combin. Inv.</th>
<th>OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, F, G, V</td>
<td>45</td>
<td>E, F, G, V</td>
<td>95</td>
</tr>
<tr>
<td>E, V, F, G, V</td>
<td>--</td>
<td>E, F, G, V</td>
<td>--</td>
</tr>
<tr>
<td>E, F, G, V</td>
<td>115</td>
<td>E, F, G, V</td>
<td>130</td>
</tr>
</tbody>
</table>
Example 1 (c)

<table>
<thead>
<tr>
<th>Combin.</th>
<th>Inv.</th>
<th>OK?</th>
<th>Combin.</th>
<th>Inv.</th>
<th>OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₀,F₀,GW</td>
<td>65</td>
<td>Y</td>
<td>E₀,F,Y,GW</td>
<td>115</td>
<td>Y</td>
</tr>
<tr>
<td>E₁,F₀,GW</td>
<td>125</td>
<td>Y</td>
<td>E₁,F,Y,GW</td>
<td>175</td>
<td>N</td>
</tr>
<tr>
<td>E₂,F₀,GW</td>
<td>N</td>
<td>N</td>
<td>E₂,F,Y,GW</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>E₃,F₀,GW</td>
<td>N</td>
<td>N</td>
<td>E₃,F,Y,GW</td>
<td>205</td>
<td>N</td>
</tr>
<tr>
<td>E₀,F,X,GW</td>
<td>135</td>
<td>N</td>
<td>E₀,F,Z,GW</td>
<td>150</td>
<td>Y</td>
</tr>
<tr>
<td>E₁,F,X,GW</td>
<td>195</td>
<td>N</td>
<td>E₁,F,Z,GW</td>
<td>210</td>
<td>N</td>
</tr>
<tr>
<td>E₂,F,X,GW</td>
<td>N</td>
<td>N</td>
<td>E₂,F,Z,GW</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>E₃,F,X,GW</td>
<td>N</td>
<td>N</td>
<td>E₃,F,Z,GW</td>
<td>240</td>
<td>N</td>
</tr>
</tbody>
</table>

Example 1 (d)

<table>
<thead>
<tr>
<th>Combin.</th>
<th>Inv.</th>
<th>OK?</th>
<th>Combin.</th>
<th>Inv.</th>
<th>OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₀,F₀,GZ</td>
<td>75</td>
<td>Y</td>
<td>E₀,F,Y,GZ</td>
<td>125</td>
<td>Y</td>
</tr>
<tr>
<td>E₁,F₀,GZ</td>
<td>135</td>
<td>Y</td>
<td>E₁,F,Y,GZ</td>
<td>185</td>
<td>N</td>
</tr>
<tr>
<td>E₂,F₀,GZ</td>
<td>155</td>
<td>N</td>
<td>E₂,F,Y,GZ</td>
<td>205</td>
<td>N</td>
</tr>
<tr>
<td>E₃,F₀,GZ</td>
<td>165</td>
<td>N</td>
<td>E₃,F,Y,GZ</td>
<td>215</td>
<td>N</td>
</tr>
<tr>
<td>E₀,F,X,GZ</td>
<td>145</td>
<td>N</td>
<td>E₀,F,Z,GZ</td>
<td>--</td>
<td>N</td>
</tr>
<tr>
<td>E₁,F,X,GZ</td>
<td>205</td>
<td>N</td>
<td>E₁,F,Z,GZ</td>
<td>--</td>
<td>N</td>
</tr>
<tr>
<td>E₂,F,X,GZ</td>
<td>225</td>
<td>N</td>
<td>E₂,F,Z,GZ</td>
<td>--</td>
<td>N</td>
</tr>
<tr>
<td>E₃,F,X,GZ</td>
<td>--</td>
<td>N</td>
<td>E₃,F,Z,GZ</td>
<td>--</td>
<td>N</td>
</tr>
</tbody>
</table>

Summary of procedure:

Form all logical combinations.
Delete those that violate any technical constraints.
Delete those that violate any budget constraint.
Apply PW to select the best combination.

Consider 3 mutually exclusive options:
A, B, and C, with cash flows as shown in the table.
Apply Rate-of-return to select the best option.

MARR = 15%

Project
<table>
<thead>
<tr>
<th>t</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–30,000</td>
<td>–15,000</td>
<td>–20,000</td>
</tr>
<tr>
<td>1</td>
<td>11,175</td>
<td>6,159</td>
<td>7,546</td>
</tr>
<tr>
<td>2</td>
<td>11,175</td>
<td>6,159</td>
<td>7,546</td>
</tr>
<tr>
<td>3</td>
<td>11,175</td>
<td>6,159</td>
<td>7,546</td>
</tr>
<tr>
<td>4</td>
<td>11,175</td>
<td>6,159</td>
<td>7,546</td>
</tr>
<tr>
<td>5</td>
<td>11,175</td>
<td>6,159</td>
<td>7,546</td>
</tr>
</tbody>
</table>

Sequence for analysis is B, C, A

\[PW_{A}(i) = -15,000 + 6,159(P/A, i, 5) = 0 \]
\[(P/A, i, 5) = 15,000/6,159 = 2.43546 \]
\[i* = 30\% > 15\%, \text{ so accept B for now} \]

\[PW_{C}(i) = -(20,000-15,000) + (7,546-6,159)(P/A, i, 5) = 0 \]
\[(P/A, i, 5) = 5,000/1,387 = 3.60490 \]
\[i* = 12.0\% < 15\%, \text{ so reject C} \]
B remains the defender
Example 2

\[
P_{WA}(i) = -(30,000 - 15,000) + (11,175 - 6,159)(P/A, i, 5) = 0
\]

\[
(P/A, i, 5) = 15,000/5,016 = 2.99043
\]

\[i^* = 20.0\% > 15\%, \text{ so accept A}
\]

Final selection is A

Example 3

Consider 2 mutually exclusive options:
A, and B, with cash flows as shown in the table.

Apply Benefit/cost ratio to select the best option.
MARR = 15%
Sequence for analysis is A, B.

<table>
<thead>
<tr>
<th>Project</th>
<th>Outflows</th>
<th>Inflows</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>0</td>
<td>20,000</td>
<td>35,000</td>
</tr>
<tr>
<td>1</td>
<td>40,000</td>
<td>57,000</td>
</tr>
<tr>
<td>2</td>
<td>60,000</td>
<td>56,000</td>
</tr>
<tr>
<td>3</td>
<td>80,000</td>
<td>42,000</td>
</tr>
</tbody>
</table>

\(B_{ij}(i)\) and \(C_{ij}(i)\) are defined (slightly) differently here compared to their initial definition (in which either \(B_j\) or \(C_j\) were equal to zero). Both definitions are used in practice and both are correct.

Consider \(B_A(15\%) = 232,284\)
Now \(C_A(15\%) = 152,753\)
so \(BCR_A(15\%) = 232,284/152,753 = 1.52 > 1\), so accept A for now

Consider \(B_B-A(15\%) = 252,355 - 232,284 = 20,071\)
Consider \(C_B-A(15\%) = 154,525 - 152,753 = 1,772\)
so \(BCR_B-A(15\%) = 20,071/1,772 = 11.35 > 1\), so accept B, final choice is B

Summary

- Method for defining combinations of independent and mutually exclusive investment alternatives: enumeration, eliminate ineligible combinations
- Demonstrated selection process for more involved situations
 - Rate-of-return, incremental method
 - B/C ratio, incremental method

Copyright 1999. Georgia Tech Research Corporation. All rights reserved.