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Abstract— This paper presents an online controller for reg-
ulating the throughput of instruction-sequences in multicore
processors using dynamic voltage-frequency scaling. The pro-
posed control law comprises an integral controller whose gain
is adjusted online based on the derivative of the frequency-
throughput relationship. This relationship is modeled as a
stochastic DEDS having no analytic functional form, and hence
its derivative is estimated by Infinitesimal Perturbation Analysis
(IPA). However, the DEDS is multi-class and hence the IPA
derivative is biased.

Biasedness of IPA is a common problem in multi-class DEDS
which has hindered the development of IPA in practical applica-
tions. However, recently it has been suggested that as long as the
relative bias has certain upper bounds, optimization algorithms
and control laws can still converge to optimal or near-optimal
parameters. The purpose of this paper is to demonstrate this
point for the aforementioned problem of throughput regulation,
thereby suggesting the potential emergence of a new class of
effective control laws in computer architectures.

I. INTRODUCTION

Infinitesimal Perturbation Analysis (IPA) has been pro-
posed as a sample-path sensitivity-analysis technique for
stochastic Discrete Event Dynamic Systems (DEDS), and
especially queueing networks [10], [3]. In particular, it
computes the gradients (derivatives) of sample-performance
functions with respect to a Euclidean variable. Let us denote
this variable by θ ∈ Rn, and let J(θ) : Rn → R be a sample
performance function defined on a common probability space
(Ω,F , P ); the IPA gradient is the sample gradient ∇J(θ),
whose dependence on the sample ω ∈ Ω is suppressed in
the notation used. The utility of ∇J(θ) arguably can be had
in situations where it is desirable to minimize the expected-
value function ζ(θ) := E

[
J(θ)

]
, E

[ · ] denoting expectation
in (Ω,F , P ), but ∇ζ(θ) lacks a closed-form expression and
has to be estimated by the (sample) IPA gradient ∇J(θ).
This requires that ∇J(θ) be an unbiased statistical estimator
of ∇ζ(θ), namely that E

[∇J(θ)
]
= ∇ζ(θ).

IPA has the appealing property that its sample gradients
often require low-complexity algorithms, not only for simple
systems but also for networks of queues. However, soon
after its inception it was discovered that IPA typically yields
statistically-biased gradients for all but the simplest of sys-
tems [10], and this hindered its development and cast doubt
about its eventual use in applications. Although various ways
to circumvent this problem have been pursued, they typically
resulted in highly-complicated estimators and hence deemed
impractical (see [10], [3] and references therein). The search
for low-complexity unbiased IPA gradients has not yet had
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an adequate solution suitable for a large class of practical
optimization and control problems.

Recently it has been suggested that the IPA gradients need
not be unbiased in order for an algorithm to converge to
a minimum value, but certain bounds on the bias would
be sufficient. Thus, if an unbiased but complex sensitivity
estimate can be replaced by a significantly- simpler IPA
gradient with a bounded bias, then optimization or control
algorithms could use it on practical problems. Experimental
evidence was observed in [4], [5], [18], and theoretical justifi-
cations are currently under investigation. This observation is
calling for a new approach to IPA by shifting its focus from
unbiased gradient estimators to low-complexity estimators
with bounded bias.

The purpose of this paper is to demonstrate this point on
the problem of regulating throughput performance of multi-
core processors. For example, the need arises in multimedia
applications where a fixed frame rate must be maintained
to avoid choppy video or audio. Another application is in
hard or soft real-time systems where constant throughput
processors enable task and thread schedulers to effectively
reason about the consequences of scheduling decisions and
thereby provide tight performance bounds.

However, there are several challenges precluding pre-
dictable throughput behavior in multicore processors. In gen-
eral, the degree of concurrency in an application instruction
stream, as measured by the instructions per cycle (IPC), is
time-varying and most often data-dependent. Furthermore,
instructions from multiple cores interfere in the caches, the
on-chip network, and memory controller queues adding addi-
tional variability to instruction execution. This variability is
amplified in asymmetric multicore processors where different
types of cores exhibiting different degrees of instruction
level parallelism and throughput capabilities are integrated
on chip.

Our starting point is the control law that was proposed for
power regulation in multicore systems [1]. The considered
problem was to control the dissipated power by the clock
frequency, so as to have it track a given reference value.
In the feedback system shown in Figure 1, the reference
power is represented by the input r, the power dissipated
is the output y, and the input to the plant, u, is the clock
frequency. Reference [12] proposes a proportional control
law and carries out an analysis of stability margins and
tracking-convergence rates, under the assumption of a linear,
constant-gain plant. Reference [1] derives for the plant a
detailed, accurate system-model based on physical principles,
and proposes an integral controller with an adaptive gain. The
purpose of computing the gain continually is to maximize



the stability range and the convergence rate of the control
algorithm, thereby having the control law adjust well to
frequent changes in the program workload.
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Fig. 1. Closed-loop system.

The gain is computed, in real time, in the follow-
ing way. The plant is modeled as a nonlinear, (discrete)
time-varying, memoryless system having the functional
form yn = gn(φn−1), the controller’s transfer function
is Gc(z) = Kn

z−1

1−z−1 , and the gain Kn is defined by
Kn =

(
g

′
n(φn−1)

)−1
, with “prime” denoting derivative. We

mention that any implementation of this control law requires
the computation of the derivative term g

′
n(φn−1) in real time,

and we showed that this was possible for the considered
problem.

Our objective in this paper is to apply a similar control
law to regulate the throughput performance, but the problem
is that the derivative of the frequency – throughput func-
tional relation must be computable in real time. However
this relation is based on a stochastic-DEDS model lacking
closed-form expression for the performance, and hence the
derivative term cannot be computed analytically, let alone
in real time. For this reason we propose to use IPA for
estimating the derivative, and despite its bias we are confident
that the robustness of the control law, argued for in [1], will
yield good convergence results.

Section II describes the computer-systems setting for
our problem and surveys the main existing approaches to
throughput-performance regulation. Section III describes our
IPA approach to the problem, Section IV presents simulation
results, and Section V concludes the paper.

II. PROBLEM SETTING AND ESTABLISHED APPROACHES
TO THROUGHPUT REGULATION

The target application domain is that of asymmetric mul-
ticore processors [11], [15], [9]. An example is an eight core
processor where each core has L1 instruction and data caches
and a private unified L2 cache. Cores communicate with each
other and with memory controllers and I/O devices through
an on-chip network. Cores can be classified as in-order (IO)
cores where instructions are executed and retired in the order
they are issued, and out-of-order (OOO) cores, which employ
aggressive pipelining and speculation to issue and execute
instructions out of order, to increase the average number of
instructions executed per clock cycle (IPC). In this paper we
consider the latter type of cores.

While OOO cores typically realize higher peak throughput
at a target clock rate than IO cores, variability in the through-
put of the core is higher as the instruction level parallelism
is highly variable and input-data dependent. Throughput
variation in the IO core is primarily due to dependencies

between instructions in a thread which are very application-
and compiler-dependent. In the case of both cores, variability
is amplified due to variable delays in the cache hierarchy
(which includes the main memory controllers) and in the on-
chip network where independent instructions from each core
interact and interfere, e.g., compete for resources. However,
recent work has shown that throttling the frequency of the
cores can be effective in reducing interference in the network
and memory system. In contrast, relatively little progress has
been made on robust throughput stabilization for the cores.
Consequently, in this paper we focus on control schemes
that adjust the voltage-frequency of a core to maintain a
stable throughput rate. In principle, the operating point can
be selected to minimize interference between cores in the
network and memory hierarchy.

There are two issues when applying contemporary control
techniques to a core. First, a single controller for all types
of cores is ineffective since the consequences of changing
the voltage-frequency setting is very different for different
types of cores. The natural choice is to have each core
and its private caches be separately controlled. This implies
that each core is in a separate voltage island which is
quite common. For example, Intel’s 48 core single chip
cloud computer has 8 voltage domains and 28 frequency
domains [2].

The second issue concerns the controller design. To be
effective, it must be applicable to a broad range of core
types and independent of the applications. The latter attribute
means that the controller parameters or operation must not
depend on specific parameters of the application. In contrast
to extant control techniques in this application area, our con-
troller does not rely on extensive off-line analysis of appli-
cations and is based on a fundamental frequency-throughput
relationship that is experienced across all application and
core combinations. Thus, it can be an integral part of the
multicore design and be applicable across a wide range of
applications and core types. The rest of this section surveys
the main existing approaches for this control problem.

Throughput stabilization has been proposed as a means to
improve the predictability in real-time embedded systems. In
this setting, a-priori guarantees on task completion times are
required prior to deployment. Traditionally, computation of
the Worst Case Execution Time (WCET) of a task is used
to ensure predictability [19]. The significant drawback of
this approach is that the WCET bounds are conservative -
peak performance is significantly reduced while in practice
these bounds may be rarely approached. Consequently, the
use of WCET analysis has generally been limited to the
application to in-order cores without caches. The successful
application to high performance OOO cores is much more
challenging. For example, as shown in [17], task execution-
time uncertainty increases significantly in OOO processors
due to the use of speculation in the control path compounded
by variability in the memory hierarchy, and related works
also underscore the difficulty of applying WCET-based meth-
ods [8], [20].

An early example of throughput stabilization is due to



Zhu et. al. [21], who proposed an algorithm for hard real-
time embedded systems using dynamic voltage-frequency
scaling. Their approach is described in the context of energy-
minimization. Tasks are executed on an in-order processor
and are scheduled using the earliest deadline first (EDF) pol-
icy. To concurrently minimize energy, the authors proposed
splitting each task into a fast subtask which is executed at the
maximum frequency setting, and a subtask running at a lower
frequency and therefore incurring a lower energy cost. An
offline-tuned PID controller is proposed to tune the length of
each subtask to ensure that the overall task meets its deadline.
Recently, Suh et. al. [17] proposed stabilizing the throughput
(measured in MIPS) of embedded OOO processors using
feedback control. The proposed algorithm is a PID controller
that adjusts the processor’s voltage-frequency setting to track
a MIPS setpoint. The parameters of the controller (values
of the gain of the proportional, integral, and derivative
components) are calculated offline using a task training set.
The authors claim reasonable MIPS-tracking performance
provided the workload does not vary significantly from the
training set, limiting application to known workloads. An-
other approach to throughput stabilization for multithreaded
processors was proposed by Lohn et.al [14]. The authors
propose a statistical model of the relationship between the
throughput of a thread and the time-slot in which the thread is
scheduled to execute. The model is used to set the parameters
of a proportional feedback controller that adjusts the time-
slot allocation for a thread such that desired throughput for
each thread is achieved.

The approach that we propose in the next section is
based on an integral controller whose gain is adjusted on-
line in a way that optimizes the tracking performance in
a sense defined below. Since it computes the gain on-
line, it is suitable to changing and unpredictable application
workloads and programs. The gain’s computation is based
on the gradient (derivative) of the frequency-throughput
relationship, which is derived from a fairly complicated
queueing model and hence has no analytic (closed-form)
formula. However, we use an IPA estimator which, though
biased, is simple to compute and has a bounded error that
yields good convergence results. The details of our controller
are described in the next section.

III. CONTROL LAW FOR THROUGHPUT REGULATION

Consider the control system shown in Figure 1, where
the output signal y denotes the instruction throughput, the
reference input r is the target throughput, and the control
variable u is the clock frequency, henceforth also denoted
by φ. The system is assumed to evolve in discrete time, and
hence we will use the notation yn and un = φn for the
instruction throughput and clock frequency, respectively, at
time n.

The purpose of the feedback law is to achieve asymptotic
tracking of a given reference value r by the output signal
yn, n = 1, . . .. Suppose that the plant is a nonlinear, time-
varying, memoryless system represented by the functional
relation yn = gn(φn), where gn : R → R is a function that

depends on time n. The error signal, en, is defined by the
difference term en := r−yn. In order to achieve tracking we
use an integral control, and hence the controller is defined
by the following relation,

φn = φn−1 +Knen−1, (1)

where Kn > 0 is its time-dependent gain.
This paper concerns multicore computer systems where

each core is controlled separately, and hence the system
shown in Figure 1 pertains to an instruction-throughput reg-
ulator at each core individually. Accordingly, for a particular
core, yn represents the average throughput over a given
number of instructions, say M , and r is the throughput-
reference value that is to be tracked. The control variable φn

is the core-clock frequency, and the relations between the
error signal and the control signal are given by Equation (1).
The plant in Figure 1 represents the functional relationship
between the frequency φn and the throughput yn during a
period defined by M consecutive instructions. The challenge
that we are facing is that the plant characteristics, defined via
the function gn, are changing in unpredictable ways and there
are no closed-form functional expressions for them.

Reference [1] considered a similar problem where the
output is the power dissipated in the core which, similarly
to this paper, is controlled by the clock frequency. Thus, yn
represents the throughput during the nth observation period.
In this case, the frequency-power relationship is given by an
explicit equation, yn = gn(φn), where the function gn was
derived from basic physical principles. The controller’s gain
Kn was defined as

Kn =
1

g′
n(φn−1)

, (2)

where ‘prime’ denotes derivative with respect to φ. More-
over, this gain was shown to be computable in real time,
and hence could be used in the control system.

Asymptotic tracking of such systems was proved, in an
abstract setting, under the assumption that the plant functions
gn(φ) are convex. The results include convergence rate, error
analysis, and tracking robustness with respect to estimation
of g

′
n(φn−1) and time-variability of the plant. Specifically,

if the relative estimation error of g
′
n(φn−1) is bounded by

any number α < 1, and if |gn−1(φn−1)−gn(φn−1)| < ε for
a given ε > 0, then the asymptotic tracking error is in the
order of ε. As a special case, if the plant is time invariant and
g := gn is known, then tracking is achieved despite relative
error of under an upper bound that is less than 100%.

The situation in this paper is different principally in the
fact that we have no analytic form for the function gn(φ).
Instead, this function is defined as the measured instruction
throughput over M consecutive instructions (for a given M ),
and its derivative g

′
n(φ) is computed by IPA from measure-

ments taken in real time.1 The IPA derivative, described

1gn depends on the load-program and can be viewed as a random
function. However, since we are concerned with control and IPA, we
focus on its realizations along sample paths without having to specify their
underlying probability laws.



below, is certainly biased, but we will argue that the relative
bias is small, far-less than 100%, and we will show that
this will not impede tracking in light of the aforementioned
robustness result concerning the relative error. The variability
of the plant, measured by |gn(φn−1)− gn−1(φn−1)|, cannot
be predicted, and any tracking algorithm would have to
contend with the time-varying feature of the plant. It can
be controlled to some degree by the choice of M , the num-
ber of instructions underscoring the plant function, which
balances precision versus temporal properties of the control
system. The convexity assumption, made in [1], cannot be
ascertained, but the results in [1] regarding tracking also hold
true when the plant functions gn(φ) are concave. If these
functions are neither convex nor concave then the closed-loop
system may be unstable, but this problem can be practically
overcome by imposing an upper bound on variations in the
control variable φ in each iteration. In our case this was
not necessary, and extensive simulation studies exhibited
concavity of these functions.

We next turn to describe the plant model and derive its
IPA derivative.

A. Plant Modeling

Consider a sequence of instructions, Ii, i = 1, 2, . . .,
that have to be executed by a core. When an instruction
Ii arrives it is directed to a reservation station, where it
is stored until all of its operands become available. At the
same time an entry is made for it in the reorder buffer,
which guarantees that the instructions are dequeued (depart)
in the order of their arrivals. The reorder buffer is called
the queue, and the arrival time of the instruction to it is
called the enqueue time. Once all of the operands of the
instruction become available, it is issued to an execution

unit for processing. Following completion of execution it
remains stored until the instruction that had arrived before
it, Ii−1, is dequeued, at which time Ii can depart (dequeued)
from the system as well. The variables computed by Ii can
become available as operands to other instructions once Ii is
executed, and not when it is dequeued (which may happen
later). This sequence of events describes architectures that
allow for out-of-order execution while maintaining the order
of departure of instructions (dequeueing) according to their
arrival (enqueueing) order. This principle is described in [7]
and is currently implemented in many core architectures; see,
e.g., [6].

To illustrate the workings of this architecture consider the
system shown in Figure 2. Let ai denote the time Ii arrives,
which is its enqueue time at the reorder buffer (queue). The
figure shows a number of execution units, which are assigned
to the instructions according to their types (e.g., add/subtract,
multiply, etc.). Instruction Ii is directed to its designated
execution unit as soon as all of its operands are available.
We refer to this time as the issue time, and it is denoted by
αi; certainly αi ≥ ai. We assume that the execution units
have enough buffer and other resources to service all of their
assigned instructions, and hence no stalling occurs as a result
of queueing delays. Let δi denote the completion time of

Ii at its execution unit; then δi > αi. Right after time δi,
the variables computed by Ii are available as operands to
other instructions. However, Ii may not be dequeued from
the system yet since it may have to wait for Ii−1 to be
dequeued. Denoting the dequeueing time of instruction i by
di, we have that di ≥ δi and di ≥ di−1.
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Fig. 2. Complex Out-of-Order Execution Core.

Observe that the main causes of instruction stalls are
(i) waiting at the reservation station until all the necessary
operands become available, and (ii) waiting for prior instruc-
tions to dequeue. The former scenario enables out-of-order
executions while the latter guarantees in-order departures.
This acts to increase the throughput while increasing its jitter,
thereby raising the need for throughput control.

To quantify all of this, let us denote by θ the clock cycle
time. Furthermore, let 	(i) denote the clock-cycle count of
the enqueue time ai, and hence

ai = 	(i)θ. (3)

Consider a particular instruction Ii. If all of its operands
are available at its enqueue time then it can be issued to
its execution unit one clock cycle later, and in this case,
αi = ai + θ. On the other hand, if not all of its operands
are ready, it has to wait until they all become available. We
can assume that each one of these operands is the output of
another instruction, and let us denote by k(i) the index of
the last instruction that is stalling Ii in this way. Then, we
have that αi = δk(i) + θ. Combining the last two equations,
we get that

αi = max
{
ai, δk(i)

}
+ θ. (4)

Next, consider the execution (processing) time of instruction
Ii at its execution unit. We call instructions that are not
memory fetches synchronous, and their execution times can
be approximated well by n(i)θ, where n(i) is an integer
constant, typically under 10, that depends on the execution
unit where the instruction is processed. For memory accesses
to the cache, we have a similar formula where the range of
n(i) depends on the level of cache (L1, L2, or L3), and is
typically under 100. For memory fetches from other storage
devices such as RAM, the major part of the latency can be
approximated by a term Tmem, that typically is in the order
of hundreds of clock cycles or larger. We assume that this
term does not depend on θ because such memory systems



use a different clock than the one used in the core.2 Thus,
the following is an approximate formula for δi:

δi =

⎧⎨
⎩

αi + n(i)θ, synchronous instruction or cache
memory fetch

αi + Tmem, other memory fetches.
(5)

Finally, if Ii is not stalled at the reorder queue after its
execution then it can be dequeued at the next clock cycle,
and if it is stalled then it is dequeued one clock cycle after
Ii−1 departs. Consequently, we have that

di = max
{
δi + θ, di−1

}
+ θ. (6)

Observe that Equations (3) - (6) are jointly recursive, and
can be used to compute di for all i = 1, . . .. In particular,
we are interested in the instruction throughput, denoted by
y := M/dM for a given integer M > 0. However, in the
implementation of the control law described in the sequel, y
will not be computed by these equations, but rather observed
from the system or, in the test-case described below, from a
simulation run. The role of Equations (3) - (6) is merely to
provide an algorithm for computing the derivative term y

′
(θ)

via IPA. This term yields y
′
(φ) via the relation φ = θ−1,

which will be used in the denominator of Equation (2) to
define the control law.

B. IPA Derivative and Throughput Control

Equations (3)-(6) yield the IPA derivatives d
′
i(θ), i =

1, . . . ,M , in a recursive manner, as described in the follow-
ing proposition. Recall that k(i) was defined as the index
of the instruction Ik that provides the last operand required
for Ii to be issued to its execution unit. We also need the
following two definitions for i = 1, . . ..

ν(i) :=

⎧⎨
⎩

0, if Ii is a memory fetch that is not
from cache

n(i), otherwise,

and

m(i) := max
{
m ≤ i : Im did not stall following

its execution
}
.

Proposition 1: The following Equations (7) and (8) are in
force for all i = 1, . . . ,M .

α
′
i(θ) =

⎧⎪⎪⎨
⎪⎪⎩

α
′
k(i)(θ) + ν(k(i)) + 1, if Ii stalls

upon arrival
	(i) + 1, if Ii does not stall

upon arrival.
(7)

and

d
′
i(θ) = α

′
m(i)(θ) + ν(m(i)) + i−m(i) + 2. (8)

Proof: This is a direct application of Equations (3)-
(6). Consider first Equation (7). If Ii is not stalled upon

2This is an approximation. Tmem has components that depend on θ
but these are sublinear and hard to model. However, as we shall see, our
controller works well with this approximation.

arrival then, by (4), αi = ai + θ, and hence, and by (3),
α

′
i(θ) = 	(i) + 1. This is the second case of (7).
On the other hand, suppose that Ii stalls upon arrival. By

(4), αi = δk(i) + θ. Now there are two subcases: (i) Ik(i)
is a synchronous instruction or a cache-memory access, and
(ii) Ik(i) is a memory access that is not cache. In subcase
(i), (5) implies that δk(i) = αk(i)) + n(k(i))θ, hence αi =

αk(i) +
(
n(k(i)) + 1

)
+ θ; consequently α

′
i(θ) = α

′
k(i)(θ) +

ν(k(i)) + 1, which is the first case of (7). In subcase (ii),
(5) implies that δk(i) = αk(i) + Tmem, hence αi = αk(i) +

Tmem + θ; consequently α
′
i(θ) = α

′
k(i)(θ) + 1, which is

the first case of (7). This establishes Equation (7) under all
possible situations.

Next, consider Equation (8). By (6), if Ii stalls after its
execution then di = di−1 + θ, and if Ii does not stall after
its execution then di = δi + 2θ. Therefore, we have that
di = dm(i) +

(
i − m(i)

)
θ = δm(i) + (i − m(i) + 2)θ, and

hence d
′
i(θ) = δ

′
m(i)(θ)+ (i−m(i)+2). By (5), δ

′
m(i)(θ) =

α
′
m(i)(θ) + ν(m(i)), from which (8) follows.
The control law that we use is based on Equations (1)

in the following manner. The duration of an application
program is divided into a sequence of observation periods
consisting each of a given number of M instructions. During
the nth observation period the control parameter, namely the
clock frequency φn, is fixed, the throughput yn is measured,
and its sample derivative y

′
n(φn) is computed. At the end

of the period the error en := r − yn is computed, the gain
Kn+1 is computed by the formula Kn+1 := 1/y

′
n(φn), and

the clock frequency is updated via the equation φn+1 =
φn + Kn+1en. Notice that this is the integral controller
described by Equations (1) and (2), with g

′
n(φn) replaced

by the term y
′
n−1(φn−1).

Regarding the sample derivative y
′
(φ), it is computable

from the IPA derivative d
′
M (θ) as follows. We have that y =

M/dM and φ = 1/θ, and hence, after some algebra, we
obtain that

y
′
(φ) =

1

M

( y

φ

)2

d
′
M (θ). (9)

In an implementation of the control law during an obser-
vation period, φ is known, y is observed, and d

′
M (θ) is

computed by IPA.
Finally, we mention that the function y(θ) is not contin-

uous at all θ and hence the IPA derivative is biased (see
[10], [3]). The main cause of the discontinuities is a change
in order of instructions’ executions due to the fact that some
memory-fetch instructions are independent of θ.3 The relative
rate of such instructions is correlated with the relative bias,
and as mentioned earlier, as long as the latter is bounded from
above by a number α < 1 the tracking algorithm is expected
to work despite the bias. The simulation results, reported on
in the next section, indeed indicate fast convergence. Note
that the IPA derivative, obtained from Equations (7)-(8), is
quite simple and can be implementable in real time. This
complies with our objective of having simple IPA algorithms

3Another factor is that the on-chip network is not controlled by the same
clock as the core.



whose bias is small enough to guarantee convergence of
optimization and control techniques that use them.

IV. SIMULATION RESULTS

The IPA controller, derived in the last section, is tested and
evaluated on an example using a detailed x86 microprocessor
simulator [13], Zesto. The microarchitectural configuration
is given in Table I. Figure 3 illustrates the functional data
flow within the core microarchitecture and the organization
of a 4-core processor configured with a ring interconnection
network. Each high performance core implements complex
out-of-order execution where instructions are fetched in
order but may be issued, executed, and completed out of
order. Each core executes in a different clock domain at
frequencies between 2.0-4.7GHz and corresponding voltage
levels between 0.8-1.3V. Our evaluations are based on the
SPEC2006 benchmark suite executing in multi-programmed
mode; each core is assigned a distinct application.

TABLE I
MICROPROCESSOR CONFIGURATION FOR CONTROLLER EVALUATION

Parameters Configuration Value
Instruction set architecture x86 IA32

Number of cores 4
Reorder buffer =size 128 entries

Execution width 6 ports
Execution type Out-of-order

Core clock 2.0GHz - 4.7GHz
Network and shared L2 clock 2.0GHz

L1 cache 4-way 32B-line 16KB
Shared L2 cache 8-way 32B-line 256KB

Application SPEC2006 benchmarks

Each core model implements the IPA-based throughput
controller, defined via Equations (7)-(9). The voltage and
frequency were adjusted approximately every 100,000 in-
structions to regulate the throughput. The period of 100,000
instruction was empirically chosen to be long enough to mask
local, inconsequential high frequency variations in through-
put yet long enough to be effective in tracking aggregate
throughput. This period is refined dynamically to ensure that
there are no instruction dependencies that exist from one
interval to the next. Therefore, the exact sampling interval
(observation period) may vary by a few tens of instructions.
The exact interval is referred to as the thread bound and is
illustrated in Figure 4.

In the throughput tracking analysis, we chose two
SPEC2006 benchmarks that can typically achieve two dis-
tinct levels of instruction throughput, milc and GemsFDTD.
In Figure 3 and 5, core0 and core1 executed the milc

benchmark with target throughput of 1.6×109 and 1.2×102

instructions per second, respectively, and core2 and core3
executed the GemsFDTD benchmark with target throughput
of 0.8× 109 and 0.5× 109 instructions per second, respec-
tively. In all experiments, throughput remains unregulated
for the first 2ms during which time each core executes at
a constant frequency of 3.0GHz. At time t = 2ms each
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(a) Functional data flow in the out-of-order execution core.
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(b) Multicore system organization.

Fig. 3. Multicore system design for IPA evaluation.
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Fig. 4. Instruction dependency and thread bound for the IPA computation
interval.

core was assigned its target throughput, the controls were
activated (the loops were closed), and the core throughput
was regulated. The comparison was made against small fixed
gain (Kn = 0.5) and large fixed gain (Kn = 5.0) controllers.

In Figure 5, we observe that the adaptive-gain IPA
controller regulates the throughput and achieves tracking
quite rapidly. In contrast, the small fixed-gain controller is
sluggish in regulating the throughput especially with the
lower throughput benchmarks, while the large-gain controller
overshoots especially with the high throughput benchmark.

We conclude this section with comments about the relative
bias of the IPA derivative estimators. Generally biasedness
of IPA is associated with discontinuities of the sample
performance functions [10], [3], and in the setting of this
paper, these tend to arise primarily from memory-fetch
instructions. One heuristic way to gauge the relative bias is to



compare finite-difference terms, obtained from simulations
with a common seed at various values of the variable
parameter, to their approximations that are derived from IPA
via linear interpolation. We have run extensive simulations
on 15 programs from the SPEC2006 benchmark suite, and
the resulting relative errors between the the two terms were
30% in one case, 21% in another case, and under 6% in
all other cases. As mentioned earlier, we expect the control
algorithm to work well under such error conditions, and this
was verified by simulation experiments. In the case where
the relative rate of memory-fetch instructions is very low,
we expect the IPA derivative of the throughput y(φ) to be
approximated well by the average number of clock cycles
per instruction (CPI), which can be computed easily by the
hardware.

V. CONCLUSIONS

The objective in this paper was to address the problem of
throughput regulation in multicore processors. Throughput
regulation is important in media applications that have strict
timing constraints and in real-time systems that must make
hard and soft guarantees on execution times. Variability in the
workload, speculative operation of modern high performance
cores, and latency variation in the memory hierarchy com-
bine to make this a challenging problem. We argue that the
inefficiency of worst case execution time analysis renders it
infeasible in most domains and motivates the work described
here.

This paper presents an online controller for regulating the
throughput of individual cores in a multicore processor using
dynamic voltage-frequency scaling. The proposed control
law comprises an integral controller whose gain is adjusted
online based on the derivative of the frequency-throughput
relationship. This derivative is estimated by IPA. The per-
formance of the controller is demonstrated on a cycle-level
x86 multicore simulator executing SPEC2006 benchmarks,
and rapid tracking and stable throughput were noted for
each core. Our future work will explore extensions that will
consider the power implications of throughput regulation
and the coordinated regulation of throughput across multiple
cores in a processor.
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(a) IPA-based dynamic gain controller

0.5 1 1.5 2 2.5 3 3.5 4
x 10

−3

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
9

time [ms]

th
ro

u
g

h
p

u
t 

[i
n

st
ru

ct
io

n
s/

se
c]

 

 

core0
core1
core2
core3

regulated throughputunregulated throughput

core0 target throughput

core1 target throughput

core2 target throughput

core3 target throughput

(b) Small fixed gain controller (Kn = 0.5)
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(c) Large fixed gain controller (Kn = 5.0)

Fig. 5. Tracking analysis of throughput regulation.


