

Dynamic, Risk-Based Aviation Security Screening Policy Performance Analysis Using Simulation

Sheldon H. Jacobson

Department of Computer Science

University of Illinois at Urbana-Champaign

Joint work with Adrian J. Lee (CITERI)
Supported in part by the National Science Foundation CMMI-0900226

July 24, 2012

Ni Hao Ni hui shuo yingyu ma?

I hope so!

Research Motivation

- Investigate passenger / baggage screening operations
- Effectively utilize security resources
- Maximize security system effectiveness
- Design security systems that work!

Overview

- Introduction
- Historical Background
- Steady State Assignment Policy
 - Maximize passenger throughput
- Transient Assignment Policy
 - Maximize security and passenger throughput
- Selective Screening Systems
- Simulation Results
- Observations and Conclusions

Introduction

- Aviation Security: A New Era
 - September 11, 2001
 - Terrorist attacks on World Trade Center Twin Towers and Pentagon
 - Ongoing Events
 - August 10, 2006: Plot to destroy ten U.S. bound transatlantic flights
 - December 25, 2009: Christmas day bomber
 - May 7, 2012: Al-Qaeda bomber
- Transportation Security Administration (TSA)
- Changes to aviation security systems
 - Reinforced cockpit doors
 - Expanded federal air marshal program
 - Behavior detection techniques (SPOT)
 - 100% checked baggage screening
 - 3-1-1 liquid and gel policy
 - Advanced Imaging Technologies

www.tsa.gov

Passenger Screening Techniques

Uniform screening

- Rationale: All passengers could pose a threat
- Passenger risk perceived equally
- Used from 1970's to 1998

Selective screening

- Rationale: Majority of passengers pose no threat
- Select passengers perceived as higher risk
- Targets expensive, specialized resources at high-risk passengers
- Used from 1998 to 2001
- TSA Pre√ is the new trusted traveler program

Passenger Prescreening Programs

- Computer-Assisted Passenger Prescreening System (CAPPS)
 - Selectees those not cleared by CAPPS
 - Nonselectees those cleared by CAPPS
 - CAPPS II (2003)
 - Lacked proper analysis and tests during development
 - Dismantled due to privacy concerns
- Secure Flight (2004)

Registered Traveler (RT) programs

www.tsa.gov

- Expedites screening process for RT members (Global Entry, Nexus)
- TSA Pre√

Baggage and Cargo Screening

- Commission on Aviation Safety and Security, July 1996
 - Explosive detection systems (EDSs)
 - Automated passenger prescreening (i.e., CAPPS)
 - Positive passenger-baggage matching (PPBM)

www.gesecurity.com

- Aviation and Transportation Security Act (ATSA)
 - 100% screening of checked baggage by December 31, 2002
- 9/11 Commission Act of 2007 Recommendations
 - Required "screening" of
 - 50% of cargo on passenger aircraft by February 2009
 - 100% of cargo by August 2010
 - Security Programs
 - Explosives detection canine teams
 - Transportation Security Inspectors (TSIs) for cargo

www.tfhrc.gov

Current Passenger Screening Programs

- Checkpoint Evolution
 - People
 - Travel Document Checker (TDC)
 - Visible Intermodal Prevention and Response (VIPR)
 - Screening Passengers by Observation Technique (SPOT)
 - Chat downs
 - Process
 - Diamond Self-Select program (3 groups)
 - TSA Pre√
 - Technology
 - Advanced Imaging Technology (AIT)
 - Trace Devices
 - Bottle Liquid Scanners (BLS)

www.tsa.gov

www.tsa.gov

Definitions

- A threat is a passenger or item that may be involved in the attack of an aircraft or within the airport terminal
- A *device* is a technology or procedure used to detect a threat
- The device capacity is an upper bound on the number of passengers or bags that a device can screen
- A security class is a subset of devices and procedures through which a passenger may be screened
- Multi-level screening is an aviation security system in which there exists several security classes to screen passengers
- An assessed threat value quantifies the passenger's perceived risk level through an automated prescreening system

Device Alarm Responses (EPIC)

True Alarm

(Effective)

- An alarm occurs for a passenger/bag containing a threat item
- Correctly identifies a potential terrorist attack

False Clear

(Perilous)

- No alarm occurs for a passenger/bag containing a threat item
- Incorrectly allows a potential terrorist to enter the airport terminal

False Alarm

(Inefficient)

- An alarm occurs for a passenger/bag containing no threat items
- Requires additional screening, cost, time

True Clear

(Convenient)

- No alarm occurs for a passenger/bag containing no threat items
- Correctly clears nonthreatening passenger

Designing Effective Screening Systems

- Challenges
 - Budget limitations, time consuming, questionable effectiveness
- Improving security screening systems
 - Screen high-risk subjects with expensive, low throughput devices
 - Design layered approach to screening passengers, baggage and cargo
 - Assign passengers, baggage,
 cargo based on *perceived risk*
- Modeling Approach
 - Real-time dynamic model
 - Maximize security, subject to device constraints

Motivation

Objectives

- Maximize security (overall true alarm rate)
- Minimize expected time passenger spends in security system

Bureau of Transportation Statistics, 2002, www.bts.gov

- Queueing aspects of passenger screening process
- Continual arrival of passengers at security checkpoint $(N \rightarrow +\infty)$
- Multi-level vs. selective screening systems

Setting and Notation

- Queue capacity c_m for security class m = 1, 2, ..., M
- Assessed threat value α_i of passenger i
 - Quantifies perceived risk resulting from prescreening
- Conditional probability of security class m detecting threat, L_m (i.e., device true alarm rate)

Setting and Notation

- Passenger arrivals
 - Independent
 - Poisson process with rate $\lambda > 0$
 - t_i = time passenger i arrives at security checkpoint $(t_i \to \infty \text{ as } i \to \infty)$
- Security class service times
 - Exponential, with rates $\mu_1 > \mu_2 > \dots \mu_M > 0$
 - Stability $\lambda < \sum_{m=1}^{M} \mu_m$
- Passenger assignments
 - Probability passenger i assigned to security class m

$$p_m(t_i) \equiv P(\mathbf{X}_m(t_i) = 1)$$

Multi-level Security Class System

- c_m : Queue capacity for security class m = 1, 2, ..., M
- Security classes operate independently

Steady State Assignment Policy

- Passenger assignments made independently
- Predetermined set of fixed security class threshold values
- Each security class has infinite capacity $(c_m = +\infty, m = 1, 2, ..., M)$
- Discrete random variables
 - $-N^a(t)$ Number of passengers that arrive for screening by time t
 - $N_m^a(t)$ Number of passengers assigned to class m by time t

$$N^a(t) = \sum_{m=1}^M N_m^a(t)$$

- $-N_m^d(t)$ Number of passengers screened in class m by time t
- $-S_m(t)$ Number of passengers in security class m at time t

$$S_m(t) = N_m^a(t) - N_m^d(t)$$

One-Step Analysis

- { $N_m^a(t)$, $t \ge 0$ }, m = 1,2,...,M independent Poisson processes, with rate λp_m , where $p_m \equiv P(X_m(t_i) = 1)$
- Probability transition rates (Chapman Kolmogorov Equations)

$$\frac{d}{dt}P(S_m(t)=0) = -\lambda p_m P(S_m(t)=0) + \mu_m P(S_m(t)=1)$$

$$\frac{d}{dt}P(S_m(t)=s_m) = -\lambda p_m (P(S_m(t)=s_m) - P(S_m(t)=s_m-1))$$

$$+ \mu_m (P(S_m(t)=s_m+1) - P(S_m(t)=s_m)), \qquad s_m \ge 1$$

Steady-state probabilities

$$P_s^m \equiv \lim_{t \to \infty} P(S_m(t) = s) = P(S_m = s)$$

Geometric distribution

$$P_s^m = \left(1 - \frac{\lambda p_m}{\mu_m}\right) \left(\frac{\lambda p_m}{\mu_m}\right)^s, \qquad \lambda p_m < \mu_m$$

Expectation and Variance

- Standard Queueing Results for Security Class m = 1, 2, ..., M
 - $-S_m$ = Steady-state number of passengers in security class m

$$E[S_m] = \frac{\lambda p_m}{\mu_m - \lambda p_m}, \quad Var(S_m) = \frac{\mu_m \lambda p_m}{(\mu_m - \lambda p_m)^2} \quad \lambda_m < \mu_m$$

- W_m = Steady-state amount of time a passenger spends in class m

$$E[W_m] = \frac{1}{\mu_m - \lambda p_m}, \quad Var(W_m) = \frac{\mu_m}{\lambda p_m (\mu_m - \lambda p_m)^2} \quad \lambda_m < \mu_m, \quad p_m \neq 0$$
> Security system

$$E[S] = \sum_{m=1}^{M} E[S_m] \qquad Var(S) = \sum_{m=1}^{M} Var(S_m)$$

$$E[W] = \sum_{m=1}^{M} p_m E[W_m] \qquad Var(W) = \sum_{m=1}^{M} p_m^2 Var(W_m)$$

Service rate mean, variance: $\overline{\mu} = \frac{1}{M} \sum_{m=1}^{M} \mu_{m}, \quad \sigma_{\mu}^{2} = \frac{1}{M} \sum_{m=1}^{M} (\mu_{m} - \overline{\mu})^{2}$

(C) Jacobson 2012

Steady State Solutions

• Equalize E[\mathbf{S}_m] across m = 1, 2, ..., M \Rightarrow $p_m = \frac{\mu_m}{M\overline{\mu}}$

$$E[S] = \frac{M\lambda}{M\overline{\mu} - \lambda} \qquad Var(S) = \frac{M^2 \overline{\mu} \lambda}{(M\overline{\mu} - \lambda)^2}$$

$$E[W] = \frac{M}{M\overline{\mu} - \lambda} \qquad Var(W) = \frac{M^2 \overline{\mu}}{\lambda (M\overline{\mu} - \lambda)^2}$$

• Equalize $E[\mathbf{W}_m]$ across m=1,2,...,M \Rightarrow $p_m = \frac{1}{\lambda}(\mu_m - \overline{\mu}) + \frac{1}{M}$

$$E[S] = \frac{M\lambda}{M\overline{\mu} - \lambda} \qquad Var(S) = \left(\frac{M}{M\overline{\mu} - \lambda}\right)^{2} \left(M\sigma_{\mu}^{2} + \lambda\overline{\mu}\right)$$

$$E[W] = \frac{M}{M\overline{\mu} - \lambda} \qquad Var(W) = \left(\frac{M}{\lambda(M\overline{\mu} - \lambda)}\right)^{2} \left(M\sigma_{\mu}^{2} + \lambda\overline{\mu}\right)$$

Static Passenger Queueing Problem (SPQP)

Minimize expected passenger security sojourn time, E[W]

min imize
$$\sum_{m=1}^{M} \frac{p_m}{\mu_m - \lambda p_m}$$
subject to
$$0 \le p_m \le 1 \qquad m = 1, 2, ..., M$$

$$p_m < \mu_m / \lambda \qquad m = 1, 2, ..., M$$

$$\sum_{m=1}^{M} p_m = 1$$

- Solve nonlinear program (NLP) for $p_1, p_2, ..., p_M$
- Second inequality constraint replaced with $p_m + \varepsilon_m \le \mu_m / \lambda$
 - − Take limit as ε_m → 0

Example: Two-Class Security System

- $p_1 = P(X_1(t_i)=1), p_2 = P(X_2(t_i)=1) = 1-p_1$, with $\mu_1 + \mu_2 > \lambda$, $\mu_1 > \mu_2$
- Solution to SPQP

$$p_{1}^{*} = \frac{\mu_{1}(\lambda - 2\mu_{2})}{\lambda(\mu_{1} - \mu_{2})} + \sqrt{\left(\frac{\mu_{1}(\lambda - 2\mu_{2})}{\lambda(\mu_{1} - \mu_{2})}\right)^{2} + \frac{\mu_{1}\mu_{2}}{\lambda^{2}} - \frac{\mu_{1}(\lambda - 2\mu_{2})}{\lambda(\mu_{1} - \mu_{2})}}$$

$$p_{2}^{*} = \frac{\mu_{2}(2\mu_{1} - \lambda)}{\lambda(\mu_{1} - \mu_{2})} - \sqrt{\left(\frac{\mu_{1}(\lambda - 2\mu_{2})}{\lambda(\mu_{1} - \mu_{2})}\right)^{2} + \frac{\mu_{1}\mu_{2}}{\lambda^{2}} - \frac{\mu_{1}(\lambda - 2\mu_{2})}{\lambda(\mu_{1} - \mu_{2})}}$$

• If $\mu_1 = \mu_2$, then $p_1^* = p_2^* = 1/2$

Transient Assignment Policy

Objectives

- Maximize security (true alarm rate)
- Minimize expected passenger security sojourn time

Queueing analysis

- Observe the screening process at each passenger arrival time
- Interarrival times: exponential with rate $\lambda > 0$

•
$$\delta_i = t_i - t_{i-1}$$

- **Finite** security class capacities, c_m

Weighted cost function

Minimize cost to create balance between objectives

Transient Analysis

• Number of passengers screened in class m during $(t_i, t_{i+1}]$

$$N_m^s(t_i, t_{i+1}) = N_m^d(t_{i+1}) - N_m^d(t_i)$$

- Independent of passenger arrival time, t_i
- Dependent on number of passengers in the system at time t_i , $\{S_m(t_i)\}$
- Conditional probability for the number of passengers screened

$$P(N_{m}^{s}(t_{i},t_{i+1}) = n_{m}^{s}|S_{m}(t_{i}) = s_{m}) = \begin{cases} e^{-\mu_{m}\delta_{i+1}}(\mu_{m}\delta_{i+1})^{n_{m}^{s}}/n_{m}^{s}! & \text{if } n_{m}^{s} < s_{m} \\ 1 - \sum_{n_{m}^{s} = 0}^{s_{m}-1} e^{-\mu_{m}\delta_{i+1}}(\mu_{m}\delta_{i+1})^{n_{m}^{s}}/n_{m}^{s}! & \text{if } n_{m}^{s} = s_{m} \\ 1 & \text{if } s_{m} = 0 \end{cases}$$

Markov Chain

Model as discrete-time, inhomogeneous Markov chain

$$P_{m}^{k,j}(t_{i}) = \begin{cases} (1 - p_{m}(t_{i}))P(N_{m}^{s}(t_{i}, t_{i+1}) = k | S_{m}(t_{i}) = k) \\ + p_{m}(t_{i})P(N_{m}^{s}(t_{i}, t_{i+1}) = k + 1 | S_{m}(t_{i}) = k) \\ p_{m}(t_{i})P(N_{m}^{s}(t_{i}, t_{i+1}) = 0 | S_{m}(t_{i}) = k) \end{cases} for k = 0,1,...,c_{m}, j = 0$$

$$P_{m}^{k,j}(t_{i}) = \begin{cases} (1 - p_{m}(t_{i}))P(N_{m}^{s}(t_{i}, t_{i+1}) = k - j | S_{m}(t_{i}) = k) \\ (1 - p_{m}(t_{i}))P(N_{m}^{s}(t_{i}, t_{i+1}) = k - j + 1 | S_{m}(t_{i}) = k) \end{cases} for k = 0,1,...,c_{m}, j = 0$$

$$P(N_{m}^{s}(t_{i}, t_{i+1}) = 0 | S_{m}(t_{i}, t_{i+1}) = k - j + 1 | S_{m}(t_{i}) = k) \end{cases} for k = 1,2,...,c_{m}, 1 \leq j \leq k$$

$$P(N_{m}^{s}(t_{i}, t_{i+1}) = 0 | S_{m}(t_{i}) = k) \qquad for k = j = c_{m}$$

$$0 \qquad otherwise$$

Boundary condition

$$P(S_m(t_1) = s_m) = \begin{cases} 1 & if \ s_m = 0 \\ 0 & otherwise \end{cases}$$

• States $s_m = 0,1,...,c_m$ positive recurrent and aperiodic

Closed-Form Recursions

Expected number of passengers in security class m

$$E[S_m(t_{i+1})] = E[S_m(t_i)] + p_m(t_i)(1 - P(N_m^s(t_i, t_{i+1}) = 0, S_m(t_i) = c_m)) - E[N_m^s(t_i, t_{i+1})]$$

- Boundary condition, $E[S_m(t_1)] = 0$
- Expected amount of time passenger i+1 spends in security system if assigned to security class m

$$E[W_m(t_{i+1})] = E[W_m(t_i)] + \frac{p_m(t_i)}{\mu_m} (1 - P(N_m^s(t_i, t_{i+1}) = 0, S_m(t_i) = c_m)) - \frac{1}{\mu_m} E[N_m^s(t_i, t_{i+1})]$$

- Boundary condition, $E[\mathbf{W}_m(t_1)] = 1/\mu_m$
- Security class threshold values

$$b_m(t_i) = F_{\alpha}^{-1} \left(\sum_{j=1}^m p_j(t_i) \right)$$

Cost Function Components

False Clears

$$C^{Z}(t_{i}) = \left(1 - \sum_{m=1}^{M} \frac{L_{m} - L_{1}}{L_{M} - L_{1}} p_{m}(t_{i})\right)^{2}$$

Passenger Sojourn Times

$$C^{W}(t_{i}) = \left(\frac{\sum_{m=1}^{M} p_{m}(t_{i}) E[W_{m}(t_{i})] - \omega^{*}}{\max_{m=1,2,...,M} \{E[W_{m}(t_{i})]\} - \omega^{*}}\right)^{2}$$

- Optimal, steady-state expected amount of time a passenger spends in the security system, $\omega^* = \sum_{m=1,2,...,M} p_m^* \omega_m^*$
- Optimal assignment probability error, $p_m(t_i) p_m^*$

$$C^{P}(t_{i}) = \frac{1}{M-1} \sum_{m=1}^{M-1} \left(1 - \frac{p_{m}(t_{i})}{p^{*}}\right)^{2}$$
 where $p^{*} = \max\{p_{m}^{*}\}$

Dynamic Passenger Queueing Problem

Total Weighted Cost Function

$$-0 \le \eta_{1} \le 1, \quad 0 \le \eta_{2} \le 1$$
minimize $C(t_{i}) = (1 - \eta_{1})C^{Z}(t_{i}) + \eta_{1}((1 - \eta_{2})C^{W}(t_{i}) + \eta_{2}C^{P}(t_{i}))$
subject to $0 \le p_{m}(t_{i}) \le 1, \quad m = 1, 2, ..., M$

$$\sum_{m=1}^{M} p_{m}(t_{i}) = 1$$

• Solve nonlinear program for $p_1(t_i)$, $p_2(t_i)$, ..., $p_M(t_i)$

Simulation Model

Used to compare security screening policies and conduct sensitivity analysis on the objective function parameters.

Threshold values (used to assigned passengers to classes) are updated each time a passenger arrives, by solving the NLP for the SPQP. $b_m(t_i) = F_\alpha^{-1} \left(\sum_{i=1}^m p_i(t_i) \right)$

Independently seeded runs are used to estimate the mean and the variance of the number of threat items detected and of the time spent within the screening process.

Selective Screening Secondary Screening Primary Screening μ_{L_1, μ_1} μ_{L_1, μ_2} μ_{L_1, μ_2} μ_{L_2, μ_2} Exit Screening

 $1-p(t_i)$

- Optimal assignment probability for secondary screening
 - Nonselectees

Passenger λ

arrivals

$$p^*(t_i) = \begin{cases} \frac{1 - \eta_1}{1 - p_s} & \text{if } S_2(t_i) < c_2 \\ 0 & \text{otherwise} \end{cases}$$

- Selectees, $p^*(t_i) = 1$
- $-p_s$ = fraction of passengers designated as selectees

Simulation Results

- M = 2 class security system, with N = 1000 passengers
- $F_{\alpha}(\alpha)$ truncated exponential distribution (over [0,1])
 - θ ≈ E[α] for values θ < 0.1
- Passengers arrive as a Poisson process
 - $-\lambda = 2.5$ passengers/minute
- Exponential service times
 - $-\mu_1$ = 3 passengers/minute, μ_2 = 1 passengers/minute
- Security levels
 - $-L_1 = 0.75, L_2 = 0.9$ (class 2 more secure than class 1)
- Capacities
 - $-c_1 = 60, c_2 = 40$

Static Analysis for M = 2 Class Security System

Minimizing E[W] does not simultaneously minimize Var(W)

Dynamic Analysis

- Effect of cost weight η_1
- Expected number of passengers equalized in each security class when $\eta_1 = 0.9$

- Overall security (true alarms) maximized when $\eta_1 = 0$
- Expected amount of time in security system minimized when η_1 = 1.0

Security System Comparison

- System Security (true alarm rate)
- Selective system designed for maximizing security
- When η_1 = 1, selective system security is lower since no passengers undergo secondary screening

- Mean time a passenger spends in the security system (minutes)
- Two-class system designed for maximizing passenger throughput

Simulation Contribution

- Simulation is needed to estimate passenger security system sojourn time due to the dynamically evolving security threshold values within the risk-based screening policy.
- Simulation results demonstrate that a **multi-level structure** is designed to expedite screening, while a **selective screening** system increases the probability of detecting threat items.
- Simulation can be used to compare the performance of various alternative security checkpoint designs to analyze the effect on true/false alarm rates and screening times.

Summary

- Aviation Security Application
 - Systematic analysis of the passenger screening process
 - Optimal design of sequential passenger assignment policies
 - Responsively adapt to changing threat environments
- Future Extensions
 - Non-exponential interarrival and service time distributions
 - Explore alternative security system structures
 - Investigate dependency among security classes
 - Incorporate cost associated with resolving alarms (true vs. false)

How to get through airport security without a problem

Thank You (Xie Xie)

Sheldon H. Jacobson

Simulation & Optimization Laboratory Department of Computer Science

shj@illinois.edu

https:/netfiles.uiuc.edu/shj/www/shj.html

