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Conditional Monte Carlo (CMC)

I Let X = (X1, . . . ,Xm) be an m-dimensional random vector.

I For a given function g , one may want to estimate

α = E[g(X )].

I Conditional Monte Carlo

α = E (E [g(X )|Y ]) = E [r(Y )] ,

where Y is a random vector, and r(Y ) = E[g(X )|Y ].

I Main difficulty: how to select an appropriate Y such that r(·)
has a closed-form expression, or can be evaluated easily.
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Properties of CMC

I Variance Reduction. Because

Var(g(X )) = E (Var(g(X )|Y )) + Var (r(Y )) ,

the variance of the CMC estimator r(Y ) is less than or equal
to that of g(X ).

I Smoothing. In the case where g is discontinuous, the
function obtained from CMC, r(·), may be continuous.

I CMC finds applications in broad areas of operations research;
see the monograph by Fu and Hu (1997).
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Intuitions

I Roughly speaking, CMC turns an expectation w.r.t. X to an
expectation w.r.t. Y .

I It shares the same spirit as change of variable in elementary
calculus.

I Can CMC be understood from a change-of-variable
perspective?

I Hopefully this perspective may lead to some new insights.
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A Motivated Example

I Let X1,X2 be independent exponential random variables with
mean 1. Let Fi and fi denote the cdf and pdf of Xi resp.

I For some constant K , we want to estimate

α = E
[
1{X1+X2≤K}

]
.

I CMC with conditioning on X1 produces

α = E
(
E
[
1{X1+X2≤K}|X1

])
= E [F2(K − X1)] .
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A Motivated Example (cont.)

A change-of-variable viewpoint (f (·, ·): the density of (X1,X2)):

1. Construct a 1-1 mapping: (x1, x2)→ (y1, y2) ≡ (x1, x1 + x2).
Jacobian of the mapping is 1.

2. By change of variable,

α =

∫ ∫
1{y2≤K}f (y1, y2 − y1) dy2 dy1 = E [r(Y1)] ,

where (Y1,Y2) = (X1,X1 + X2),

r(y1) =

∫
1{y2≤K}f (y1, y2 − y1) dy2∫

f (y1, y2 − y1) dy2
= F2(K − y1).
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A Motivated Example (cont.)

Can we construct other 1-1 mappings?

An interesting 1-1 mapping:

(x1, x2)→ (y1, y2, z) ≡
(

x1
x1 + x2

,
x2

x1 + x2
, x1 + x2

)
.

I Image space of the mapping: {(y1, y2, z) : y1 + y2 = 1, z > 0}.
Note that domain of (X1,X2) is R2

+.

I Jacobian of the mapping:
√

2/z
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A Motivated Example (cont.)

I Denote y = (y1, y2). Let (Y ,Z ) =
(

X1
X1+X2

, X2
X1+X2

,X1 + X2

)
.

Density of (Y ,Z ) is

f̃ (y , z) =
z√
2
f (y1z , y2z).

I By change of variable,

α =

∫ ∫
1{z≤K}f̃ (y , z) dz dy = E [r(Y )] ,

where

r(y) =

∫
1{z≤K}f̃ (y , z) dz∫

f̃ (y , z) dz
= α.
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General Mappings

Consider the following 1-1 mapping:

u : x = (x1, . . . , xm)→ (u1(x), . . . , un(x)).

Let u−1(v) = x if u(x) = v , where v = (v1, . . . , vn).

Derivative matrix of the mapping is defined as

Du(x) =


∂u1(x)/∂x1 ∂u2(x)/∂x1 . . . ∂un(x)/∂x1
∂u1(x)/∂x2 ∂u2(x)/∂x2 . . . ∂un(x)/∂x2

...
...

...
...

∂u1(x)/∂xm ∂u2(x)/∂xm . . . ∂un(x)/∂xm

 .
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General Mappings (cont.)

Let J(x) denote the Jacobian of the mapping, i.e.,

J(x) =
√

det(Du(x)(Du(x))T ).

Then the density of (u1(X ), . . . , un(X )) can be written as

f̃ (v) =
1

J(u−1(v))
f (u−1(v)),

where f (·) is the density of X .

Let S be the support of X . For any A ⊂ S ,∫
A
f (x) dx =

∫
u(A)

f̃ (v) dv ,

where u(A) denotes the image of set A under the mapping u.
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A Change-of-Variable Viewpoint of CMC

Let
(u1(X ), . . . , un(X )) = (Y ,Z ).

Denote the density of (Y ,Z ) by f̃ (y , z).

Problem: to estimate α = E[g(X )].

Objective: to find a function r(·), such that

α = E[g(X )] = E[r(Y )].

In certain sense, it is equivalent to using CMC by conditioning on
Y .
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Mathematical Derivation

Note that

E[g(X )] =

∫
g(x)f (x) dx =

∫ ∫
g(u−1(y , z))f̃ (y , z) dz dy .

Then we need to choose an appropriate function r such that

α =

∫ ∫
g(u−1(y , z))f̃ (y , z) dz dy =

∫ ∫
r(y)f̃ (y , z) dz dy ,

(1)

13 / 31



A Change-of-Variable Representation

It can be verified that one choice of r(·) is

r(y) =

∫
g(u−1(y , z))f̃ (y , z) dz∫

f̃ (y , z) dz
.

Under this choice, a new representation of α:

α = E [r(Y )] .

Theorem
The new representation always leads to a variance reduction, i.e.,

Var(r(Y )) ≤ Var(g(X )).

14 / 31



An Important Special Case

Suppose one wants to estimate

α = E
[
g(X ) · 1{h(X )≤z0}

]
.

We construct a 1-1 mapping as follows:

u : (x1, . . . , xm)→ (y1, . . . , ym, z) ≡
(

x1
h(x)

, . . . ,
xm
h(x)

, h(x)

)
.

Let hi denote the partial derivative of h w.r.t. xi . It can be shown
that Jacobian of the mapping is

J(x) =

√
1

h2m

(
1− x1h1 + . . .+ xmhm

h

)2

+
h21 + . . .+ h2m

h2(m−1)
.
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Positive Homogeneous h

Suppose h satisfies the following condition:

x1h1(x) + . . .+ xmhm(x) = h(x). (2)

Condition (2) implies positive homogeneity, i.e.,

h(tx) = th(x), ∀t ∈ R+.

Examples of positive homogeneous functions

I linear functions

I max(x1, . . . , xm), min(x1, . . . , xm)

I h(x) = |x |
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Positive Homogeneous h (cont.)

When h satisfies Condition (2), the Jacobian has a simpler form:

J(x) =
1

|hm−1(x)|

√
h21(x) + . . .+ h2m(x).

In this case, derivation of the function r(·) may become much
easier.

Many practical problems, e.g., in financial applications, can fit into
our framework by using positive homogeneous function h.
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Conditional Expectations

In some applications, one may be interested in estimating

fh(z0), E[g(X )|h(X ) = z0],

where fh(·) denotes the density of h(X ).

Under mild conditions, they can be rewritten as

fh(z0) =
d

dz0
E
[
1{h(X )≤z0}

]
,

and

E [g(X )|h(X ) = z0] =
1

fh(z0)

d

dz0
E
[
g(X )1{h(X )≤z0}

]
.
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Simulating Conditional Expectations

The problem of simulating conditional expectations then reduces
to estimating the following quantity:

β =
d

dz0
E
[
g(X )1{h(X )≤z0}

]
.

The change-of-variable approach can be applied to establish a new
representation of β.

We make use of the mapping

u : (x1, . . . , xm)→ (y1, . . . , ym, z) ≡
(

x1
h(x)

, . . . ,
xm
h(x)

, h(x)

)
.
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A New Representation of β

Previous analysis leads to

E
[
g(X )1{h(X )≤z0}

]
= E [r(Y )] ,

where

r(y) =

∫
g(u−1(y , z))1{z≤z0}f̃ (y , z) dz∫

f̃ (y , z) dz

=

∫ z0
∞ g(u−1(y , z))f̃ (y , z) dz∫∞

−∞ f̃ (y , z) dz
.
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A New Representation of β(cont.)

Then under appropriate smoothness conditions, we have

β =
d

dz0
E
[
g(X )1{h(X )≤z0}

]
=

d

dz0
E [r(Y )] = E

[
d

dz0
r(Y )

]
= E [w(Y )] ,

where

w(y) =
g(u−1(y , z0))f̃ (y , z0)∫∞

−∞ f̃ (y , z) dz
.

Then β can be easily estimated by using samples of w(Y ).
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Implementation Issues

To derive r(y), one needs the closed-form formulas of∫ z0
∞ g(u−1(y , z))f̃ (y , z) dz and

∫∞
−∞ f̃ (y , z) dz .

To derive w(y), one needs the closed-form formula of∫∞
−∞ f̃ (y , z) dz .

This derivation is problem dependent.

It turns out for many practical applications, closed-form formulas
can be derived.
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An Example

I Let X = (X1, . . . ,Xm) be underlying asset price valued at m
discretization time points.

Xk = Xk−1 exp{(r − σ2/2)τ + σ
√
τNk}, k = 1, . . . ,m,

where {N1, . . . ,Nm} are independent standard normal random
variables.

I Let h(x) = max(x1, . . . , xm) ≡ x̂ , and Y = X/h(X ). The
quantities of interest are

α = E
[
1{X̂≤z0}

]
= E[r(Y )], β =

d

dz0
E
[
1{X̂≤z0}

]
= E[w(Y )].
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An Example (cont.)

I It can be derived that

r(y) = Φ

(
ln z0y1/x0 − (r − σ2/2)τ

σ
√
τ

)
,

and

w(y) =
1

z0σ
√
τ
φ

(
ln z0y1/x0 − (r − σ2/2)τ

σ
√
τ

)
,

where Φ and φ denote standard normal cdf and pdf resp.
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Application to Greek Estimation

I Payoffs of some financial options may be discontinuous. They
can usually be written in the form

g(X )

q∏
i=1

1{li (X )≤ai}.

I Here X is a random vector that represents the dynamics of
the underlying asset and depends on a market parameter θ.
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Expressions of Greeks

The Greek that one wants to estimate can be written as

p′(θ) =
d

dθ
E

[
g(X )

q∏
i=1

1{li (X )≤ai}

]

= E

[
∂θg(X )

q∏
i=1

1{li (X )≤ai}

]

−
q∑

i=1

fli (ai )E

g(X )∂θli (X)
∏
k 6=i

1{lk (X )≤ak}

∣∣∣∣∣∣ li (X ) = ai

 ,
where the notation ∂θ denotes the operator of taking pathwise
derivative w.r.t. θ, and fli (·) denotes the density of li (X ).
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Expressions of Greeks (cont.)

For notational ease, we let

gi (X ) = (X )∂θli (X )
∏
k 6=i

1{lk (X )≤ak}.

Then the main problem in Greek estimation reduces to how to
estimate

γ =

q∑
i=1

fli (ai )E [gi (X )| li (X ) = ai ] =

q∑
i=1

d

dai
E
[
gi (X )1{li (X )≤ai}

]
.

For most financial options with discontinuous payoffs, their payoffs
can be written in the above form using some positive homogeneous
functions l1, . . . , lq.
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Numerical Examples: A Digital Option

I Price dynamics follows a geometric Brownian motion:

Xk = Xk−1 exp{(r − σ2/2)τ + σ
√
τNk}, k = 1, . . . ,m.

I Discounted payoff: e−rT1{Xm≥K}.

I One wants to estimate delta:

∆ =
d

dx0
E
[
e−rT1{Xm≥K}

]
.
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Numerical Results: A Digital Option

We compare the likelihood ratio (LR) method and the
change-of-variable method.
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Numerical Examples: A Barrier Option

Discounted payoff: e−rT (Xm − K )+1{max(X1,...,Xm)≤κ}.
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Conclusions

We have proposed a change-of-variable approach to simulating
conditional expectations.

The proposed approach provides a new perspective for
understanding conditional Monte Carlo.

It can be used to derive new representations of densities and
conditional expectations, which lead to efficient estimators.

As an application, the proposed approach works well in Greek
estimation of financial options.
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