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The Basic Problem:

View the simulation model as a function that sends input
parameters to some output (performance) measure

Goal: Estimate this function

Example: How does the expected number-in-system behave as a
function of the service rates in a queueing network?
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EQ(c0)

EQ(c0) = 245
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Why the problem is of interest:

@ One is dealing with a system in which one expects significant
variability in the inputs to the system (e.g. arrival rates). One
needs a system design that performs reasonably well across a
wide range of parameter values.

@ One needs a functional estimate as an input to a real-time
decision tool in which the input value is not known a priori (e.g.
computing the price of an option across a range of prices of the
underlying asset).
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@ Stochastic models are often used not as predictive tools but to
generate qualitative insight into a system. Understanding how a
system behaves as a function of the input variables is one source
of such insight.

@ Response surface estimation can be a useful first step in studying
various features of the system (e.g. optimization)

Screening methods
Many optimization methods implicitly estimate the response
surface (at least locally in a neighborhood of the optimizer)
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Why the problem is difficult:

The object to be computed is an "infinite-dimensional” (or, at least,
high-dimensional) quantity.
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Outline of this Talk:

@ Parametric Modeling

@ Nonparametric Methods

@ Common Random Numbers

Change-of-measure

Orthogonal function approximations

Bayesian methods

@ Shape-constrained estimation
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Parametric Modeling:

Goal:  Compute a(f) = EX(0), 6 € A CR?
Method:

0.

4.

Choose a finite-dimensional approximation to «(-)

e.g. a(B,0) = o+ 3L, B + X0, Bidi;

. Choose 0;,0,,--- ,0, € A

Estimate a(61), a(62), -, a(0n) via X,(61), . .., Xm(0n), Where
1 n
= > Xi(6)
j=1
Solve the least squares problem

mlnz ) — (B, 0 ))

call the minimizer Bnm

Approximate «f(-) via a(Emm, ).
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Suppose that
n2 (X, (0:) — a(8*,0;) : 1 <i<m) = N(0,C)
as n — oo. The "correct least squares problem" is:

min (X, —a(8,)) ¢ (X, — alB,))

Peter W. Glynn (Stanford University) Response Surface Estimation July 23, 2012 9/40



Nonparametric Methods

@ Note that the natural "model-free" estimator for a(9) is
X (0),
where (X;(0) : j > 1) is iid.

@ But, in the Monte Carlo setting, we have the freedom to choose
the joint distribution (X;(#) : # € A) to our advantage.

@ A natural joint distribution is to simulate (X;(¢) : 6 € A) using
common random numbers across 0
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Common Random Numbers

Feed the system with common input sequences
e.g. Markov chains / stochastic recursions
Yi1(0) = 7(Yi(0), Z131(0))
=r(0,Y1(0), Zi11)
X0)=f(1(0):0<1<1)
Single-server queue waiting time sequence:
Wi1(0) = [Wi(0) + F ' (0, U1) — xin1]*
= [Wi(0) + Vi — xi1]*

As a function of :
@ W;(-) is convex and non-decreasing

@ W(-) is (typically) differentiable and

ZEW,(0) = EZ w,(0) (IPA)
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Why is the use of CRN advantageous?
var[X(0 + h) — X(0)]
= varX(0 + h) + varX(6) — 2cov(X(0),X(0 + h))
————
< varX(6 + h) + varX(0) depends on
. joint distribution
if cov(X(0),X(0 + h)) > 0.
This follows if:
@ X(0) is non-decreasing in the inputs (e.g. the Z;’s in the Markov

chain setting) for each 6
Caveat: Rarely holds in the "exact" sense

@ X(-) is continuous in probability and & is small:

XO+h)Sx0) as hlo
implies that
cov(X(0),X(0 + h)) — varX(0) > 0 as hlo

This holds in great generality; so we can expect reasonable "local
behavior"
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More on smoothness of X(6):

Unless we apply CRN really poorly, we can almost always expect that
X(+) is continuous in probability.

Can we expect more?

@ In some (limited) settings:

e X(-) is a.s. monotone or convex

@ In other settings, X(-) is a.s. defined in § and
d
EX'(0) = —EX(0
(6) = ~EX(0)
When this occurs,
X(0+h) — X(0) ~ hX'(0)

and (typically)
var[X (0 + h) — X(0)] = O(h?)
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@ For a Poisson process,
var[N(6 +h) —N(6)] = A\h = O(h)
For M/M/1 number-in-system process:
var[X(0 + h) — X(0)] = O(h)

This behavior likely holds in great generality for discrete-event
simulations
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Implications of Use of CRN:

CRN guarantees that the response surface is globally defined.
There are many ways to assess the quality of a response surface:

@ Integrated Mean Square (L?) Error:

E /A (an(0) — a(6))%d0

@ Worst Case Error:

sup |a, (0) — a(6))]
ISHN

@ Implications for optimization: e.g. How close is optimizer /
optimum of «,(-) to optimizer/optimum of a(-)?
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Use of CRN’s (Typical Case)

In the "typical" case,

varX(0 + h) —X(0) = 0(h) as hlO
Then, 1
a,(0) £ p ;X,-(H)

satisfies
n'2 (0 (0) — a(6)) = Z(6)
as n — oo, where (Z(0) : 0 € A) is a mean zero Gaussian random field
with
cov(Z(61),Z(62)) = cov(X(6;),X(62)).

In the "typical case", Z(-) is a continuous field but not differentiable a.e.
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Note that
E/ o, (0) — a(0)*db ~ 1E/ QIR
A n A
and

1 sup |, (6) — a(6)] = sup |Z(0)]
(AN feA

Similar behavior occurs in "IPA" setting, because once again

n'?(an(0) — a(0)) = Z(6),

where Z(-) is a Gaussian random field, except that in this setting Z(-) is
an a.s. differentiable random field
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Benchmark Analysis in Optimization Setting: What

happens without use of CRN’s?

@ Generate m iid points 6y, 0,, ..., 6, from a positive continuous
density g

@ Perform n independent simulations at each of the m points
(X1(0), - - -, Xu(6:))

@ Estimate min«a(6) via min X, (6;)
0 1<i<m
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@ Must have logm/n — 0 in order that

1rgnilgnan(O,-) — min a()

as n — oo (Devroye (1978), Ensor and G (1997))

@ What is an optimal choice of m and n?

For a given computer budget c:
m ~ red/(d+4)

0~ 1A (d+4)
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@ Then, (Chia and G (2012))

2 .= .
c#i3( min X, (6;) —mina(0)) = 5

where

B B Zr#g(e*)wg OO<2x+y) 2
P(ﬁéx)—exp< OV, P 200" y dy)

where ®(x) = P(N(0,1) > x)

@ If varX(9) = 0, rate = c—2/d
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Analysis of Typical CRN Setting:

Note that
e 2(Z(0" + €0) — Z(6*)) = R(H)

where R(-) is a Gaussian random field
Result: If 6, is the minimizer of «,(-), then
n'3(0, — 6*) = argmin[07 (H(6*)/2)60 + R(6)]
geA

1?3 (e (6) — an(87)) = min(6" (H(67)/2)0 + R(0)]

n'/2(cn(6n) — a(9%)) = Z(67)
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But we only evaluate «,(-) at points 6;,6,,...,6,,:

When we optimally trade-off n versus m,

A (0,(0,) — a(6¥)) = T
Note that:

The "discretized" minimum has the same convergence
rate as in the independent case

But

The "continuous" minimum converges (much) faster and
at a dimension-independent rate
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Use of CRNs ("IPA" case)

In the IPA setting where Z(.) is differentiable,
an(0) = a(0*)+Z(6%)/n'*+(0—6*)TH(6*) /2(0—0")+VZ(0*) (6—6*) /n'/?
Result:

n'/2(0, —0*) = H(O*)'vz(0")"
n(an(0,) — ,(6%)) = VZ(O)H(9*)/2VZ(6*)T
n'2 (0 (0,) — (%)) = Z(6%)

Evaluating at 6, .. ., 6,, leads to the same ¢~2/(¢+4) rate as before....

But "continuous" minimum converges faster and (even) faster than in
"typical" CRN setting
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Change-of-Measure

Assume that a(0) = E¢X where

Py(dw) = L(6,w)P(dw)

Then,
a(f) = EyX = EXL(0)

so the response surface can be estimated via
0 =13 xL.0)
Qp = 2 il

Rarely preserves monotonicity, convexity, etc.
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@ For exponential families:

L(0) = exp <9 tizi - mp(e))
j=0

S0 a,(+) is very cheap to evaluate at many 6’s in this case (as
opposed to CRN’s).

@ variance in L(6) tends to blow up "exponentially" in r and ¢

@ «,(-) is rarely a good global approximation to af(-)
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Orthogonal Function Approximations

e.g. a(f) = Z < a, i > ¢i(0)

i=0
where

o> = /A (0)64(0)w(0)d0

—EX(0)0i(0) 1
Estimate < «, ¢; > via Monte Carlo:
0= 2 S X)) 1) (689)
=0 j=1 J

1,1
For Fourier basis and A = [0, 2x], rate of convergence is n~ 2", when
ac CP.
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Bayesian Methods:

Approach: Put a Gaussian prior on space of functions with
domain A.

i.e. impose a probability P on C(A), C'(A), C*(A), etc.

@ Then, model «(-) as a realization of such a Gaussian random
field.
@ Compute posterior

Plae-|X,(6;):1<i<m)
where

X, (0:) & a(0) +
@ Computationally expensive calculation
@ Can also compute posterior
Pla €| X,(0;),VXn(6;) : 1 <i<m)
when sample gradients are present
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Shape-constrained Estimation:

@ Observe Xi,X,,...,X,, at locations 6,6,,...,0,,

@ Assume
X = 04(9,‘) + v
for 1 <i < m, where a(-) is convex and the v;’s here satisfy
EI/,‘ =0.

@ Goal: Compute a (global) estimator for a(-)
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The Estimator

@ Let % = {g: RY — R such that g is convex}

@ Given a “weight function” w(-), estimate « via the minimizer g, of
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The Quadratic Program

ln
in - (Xi—gi)*w(b;
min 5 3 (i~ g wie)

st g >g+&(0;,—6), 1<ij<n

A~

® (21,...,8y) is unique
@ But the subgradients ¢, . . ., &, are not unique

@ There are many convex functions g, that simultaneously minimize
on(g) forge @
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To uniquely define g,, set

&n(x) =sup{gx) : g€ ¥,g(0;) =g,1 <i<n}

@ g,(x) is finite-valued on conv(#, ..., 6,) (co outside
conv(fy,...,6,))

@ g,() is a “non-local” estimator (every point influences g,(x)
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&n(x) can be computed as the optimal value y to the linear program:

max Yy

st g>ai+&(6—0), 1<ij<n
y>8i+&(y—0), 1<i<n
g >2y+& -y, 1<j<n
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Let L>(A) = {g : R — R such that Eg?>(#)w(f) < oo} and set
< 81,8 >=Egi(0)g2(0)w(0)

80 gl = V<&, 8>

Proposition
€? =€\ L*(A) is a closed convex cone in L*(A)
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The minimizer g, of
min || —
min o g
is unique and is characterized as the function g. for which
<a—g,8—8 ><0

forall g € €°.
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Our main result...
Theorem (Lim and G (2012))

For each c > 0,

sup [gn(x) — g«(x)] = 0 a.s.
[lxl|<e

asn — oo

@ previous results only for d = 1 (Hanson and Pledger (1976);
Groeneboom, Jongbloed, Wellner (2001))

@ first result on shape-constrained regression that deals with model
mis-specification
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Extensions

@ Domain of g can be a convex subset of R? (conclusion is “uniform
convergence on compact subsets of interior”)

@ Generalizes to setting where
¢ = {g: RY — R is convex and non-decreasing}
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Outline of Proof

@ By definition,

Wn(gn) < onlg«)
@ So,

{jgn i) — 8-(6) w(6:)

<

3

3\[\)

8n(0:) — g«(0:))w(0;)

1:1

e If g,(-) were a fixed convex function in L2(A), SLLN would
guarantee convergence of RHS to

E(a(0) — 8+(0))(8n(0) — 8(0))w(0) =< @ — g, 8n — 8« ><0
@ Two problems:
&, not fixed

&n ¢ L*(A)
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So...

@ Show that (¢,(g,) : n > 1) is a.s. a bounded sequence

@ Use this to show that (g,(x) : n > 1, ||x]| < ¢) is a.s. bounded

@ This implies that g, is uniformly (in n) a.s. Lipschitz over
{x: el <}

@ Can form a finite e-net hy, hy, ..., h; that provides a uniform cover
for class of Lipschitz convex functions on {x : ||x|| < c}

@ Each such #; can be convexly extended to R? so that ; € L*(A)

@ So,

2 n
- D (Xi = g4(0:) (h(6;) — 8+ (6:))w(0;) =< & — gu, hj — g >< 0
i=1
@ But g, is e-close to one of the i;’'s over {x : ||x| < c}

® So, Tim 13 (g(0h) — .(6,)°w(6:) <0
o0 =

@ Because g, is uniformly Lipschitz on {x : ||x|| < ¢}, this implies
uniform convergence on {x : ||x|| < ¢}
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Shape-based methods can be extended to Lipschitz constraints on the
response function.

Open problem: Rates of convergence, particularly when the sampling
employs common random numbers
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Conclusions:

Response surface estimation is a challenging area for which many
approaches are possible:

@ Use of common random numbers is a central theme, and the
connection to Guassian random fields and the degree of
smoothness in the sample surface plays a key role

@ Shape-constrained estimation is an interesting means of dealing
with the infinite-dimensional aspect

@ The cost of evaluating the response surface at a "new point" can
be substantial, and a good choice of "interpolant" can be
important

@ Many open problems remain

Peter W. Glynn (Stanford University) Response Surface Estimation July 23, 2012 40/ 40



