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The Basic Problem:

View the simulation model as a function that sends input
parameters to some output (performance) measure

Goal: Estimate this function

Example: How does the expected number-in-system behave as a
function of the service rates in a queueing network?
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Why the problem is of interest:

One is dealing with a system in which one expects significant
variability in the inputs to the system (e.g. arrival rates). One
needs a system design that performs reasonably well across a
wide range of parameter values.

One needs a functional estimate as an input to a real-time
decision tool in which the input value is not known a priori (e.g.
computing the price of an option across a range of prices of the
underlying asset).
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Stochastic models are often used not as predictive tools but to
generate qualitative insight into a system. Understanding how a
system behaves as a function of the input variables is one source
of such insight.

Response surface estimation can be a useful first step in studying
various features of the system (e.g. optimization)

Screening methods
Many optimization methods implicitly estimate the response
surface (at least locally in a neighborhood of the optimizer)
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Why the problem is difficult:

The object to be computed is an "infinite-dimensional" (or, at least,
high-dimensional) quantity.
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Outline of this Talk:

Parametric Modeling

Nonparametric Methods

Common Random Numbers

Change-of-measure

Orthogonal function approximations

Bayesian methods

Shape-constrained estimation
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Parametric Modeling:

Goal: Compute α(θ) = EX(θ), θ ∈ Λ ⊆ Rd

Method:
0. Choose a finite-dimensional approximation to α(·)

e.g. α(β, θ) = β0 +
∑d

i=1 βiθi +
∑d

i,j=1 βijθiθj

1. Choose θ1, θ2, · · · , θm ∈ Λ

2. Estimate α(θ1), α(θ2), · · · , α(θm) via Xn(θ1), . . . ,Xm(θm), where

Xn(θi) =
1
n

n∑
j=1

Xj(θi)

3. Solve the least squares problem

min
β

m∑
i=1

(
Xn(θi)− α(β, θi)

)2
;

call the minimizer β̂n,m.

4. Approximate α(·) via α(β̂n,m, ·).
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Remark:

Suppose that

n1/2 (Xn(θi)− α(β∗, θi) : 1 ≤ i ≤ m
)
⇒ N(0,C)

as n → ∞. The "correct least squares problem" is:

min
β

(
Xn − α(β, ·)

)T C−1 (Xn − α(β, ·)
)
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Nonparametric Methods

Note that the natural "model-free" estimator for α(θ) is

Xn(θ),

where (Xj(θ) : j ≥ 1) is iid.

But, in the Monte Carlo setting, we have the freedom to choose
the joint distribution (Xj(θ) : θ ∈ Λ) to our advantage.

A natural joint distribution is to simulate (Xj(θ) : θ ∈ Λ) using
common random numbers across θ
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Common Random Numbers

Feed the system with common input sequences

e.g. Markov chains / stochastic recursions

Yl+1(θ) = r̃(Yl(θ),Zl+1(θ))

= r(θ, Yl(θ),Zl+1)

X(θ) = f (Yl(θ) : 0 ≤ l ≤ t)

Single-server queue waiting time sequence:

Wl+1(θ) = [Wl(θ) + F−1
V (θ, Ũl)− χl+1]

+

= [Wl(θ) + θVl − χl+1]
+

As a function of θ:
Wl(·) is convex and non-decreasing

Wl(·) is (typically) differentiable and

d
dθ

EWl(θ) = E
d
dθ

Wl(θ) (IPA)
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Why is the use of CRN advantageous?

var[X(θ + h)− X(θ)]

= varX(θ + h) + varX(θ)− 2cov(X(θ),X(θ + h))

≤ varX(θ + h) + varX(θ)

if cov(X(θ),X(θ + h)) ≥ 0.

depends on
joint distribution

This follows if:
X(θ) is non-decreasing in the inputs (e.g. the Zi’s in the Markov
chain setting) for each θ
Caveat: Rarely holds in the "exact" sense

X(·) is continuous in probability and h is small:

X(θ + h) P→ X(θ) as h ↓ 0
implies that

cov(X(θ),X(θ + h)) → varX(θ) ≥ 0 as h ↓ 0

This holds in great generality; so we can expect reasonable "local
behavior"
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More on smoothness of X(θ):

Unless we apply CRN really poorly, we can almost always expect that
X(·) is continuous in probability.

Can we expect more?

In some (limited) settings:

X(·) is a.s. monotone or convex

In other settings, X(·) is a.s. defined in θ and

EX′(θ) =
d
dθ

EX(θ)

When this occurs,

X(θ + h)− X(θ) ≈ hX′(θ)

and (typically)
var[X(θ + h)− X(θ)] = O(h2)
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For a Poisson process,

var[N(θ + h)− N(θ)] = λh = O(h)

For M/M/1 number-in-system process:

var[X(θ + h)− X(θ)] = O(h)

This behavior likely holds in great generality for discrete-event
simulations
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Implications of Use of CRN:

CRN guarantees that the response surface is globally defined.

There are many ways to assess the quality of a response surface:

Integrated Mean Square (L2) Error:

E
∫
Λ
(αn(θ)− α(θ))2dθ

Worst Case Error:
sup
θ∈Λ

|αn(θ)− α(θ)|

Implications for optimization: e.g. How close is optimizer /
optimum of αn(·) to optimizer/optimum of α(·)?
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Use of CRN’s (Typical Case)

In the "typical" case,

var[X(θ + h)− X(θ)] = O(h) as h ↓ 0

Then,
αn(θ) ,

1
n

n∑
i=1

Xi(θ)

satisfies
n1/2(αn(θ)− α(θ)) ⇒ Z(θ)

as n → ∞, where (Z(θ) : θ ∈ Λ) is a mean zero Gaussian random field
with

cov(Z(θ1),Z(θ2)) = cov(X(θ1),X(θ2)).

In the "typical case", Z(·) is a continuous field but not differentiable a.e.
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Note that

E
∫
Λ
|αn(θ)− α(θ)|2dθ ∼ 1

n
E
∫
Λ
|Z(θ)|2dθ

and

n1/2 sup
θ∈Λ

|αn(θ)− α(θ)| ⇒ sup
θ∈Λ

|Z(θ)|

Similar behavior occurs in "IPA" setting, because once again

n1/2(αn(θ)− α(θ)) ⇒ Z(θ),

where Z(·) is a Gaussian random field, except that in this setting Z(·) is
an a.s. differentiable random field
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Benchmark Analysis in Optimization Setting: What
happens without use of CRN’s?

Generate m iid points θ1, θ2, . . . , θm from a positive continuous
density g

Perform n independent simulations at each of the m points
(X1(θi), . . . ,Xn(θi))

Estimate min
θ
α(θ) via min

1≤i≤m
Xn(θi)
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Must have log m/n → 0 in order that

min
1≤i≤m

Xn(θi) → min
θ
α(θ)

as n → ∞ (Devroye (1978), Ensor and G (1997))

What is an optimal choice of m and n?

For a given computer budget c:

m ∼ rcd/(d+4)

n ∼ r−1c4/(d+4)
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Then, (Chia and G (2012))

c
2

d+4 ( min
1≤i≤m

Xn(θi)− min
θ
α(θ)) ⇒ β

where

P(β ≤ x) = exp

(
− 2r

d+4
4 g(θ∗)π

d
2

Γ(d
2 )
√

|detH(θ∗)|

∫ ∞

0
Φ

(
2x + y
2σ(θ∗)

)
y

2
d−1dy

)

where Φ(x) = P(N (0, 1) > x)

If varX(θ) = 0, rate = c−2/d
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Analysis of Typical CRN Setting:

Note that
ϵ−1/2(Z(θ∗ + ϵθ)− Z(θ∗)) ⇒ R(θ)

where R(·) is a Gaussian random field

Result: If θn is the minimizer of αn(·), then

n1/3(θn − θ∗) ⇒ arg min
θ∈Λ

[θT(H(θ∗)/2)θ + R(θ)]

n2/3(αn(θn)− αn(θ
∗)) ⇒ min

θ∈Λ
[θT(H(θ∗)/2)θ + R(θ)]

n1/2(αn(θn)− α(θ∗)) ⇒ Z(θ∗)
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But we only evaluate αn(·) at points θ1, θ2, . . . , θm:

When we optimally trade-off n versus m,

c2/(d+4)(αn(θm)− α(θ∗)) ⇒ Γ

Note that:

The "discretized" minimum has the same convergence
rate as in the independent case

But

The "continuous" minimum converges (much) faster and
at a dimension-independent rate
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Use of CRNs ("IPA" case)

In the IPA setting where Z(.) is differentiable,

αn(θ) ≈ α(θ∗)+Z(θ∗)/n1/2+(θ−θ∗)TH(θ∗)/2(θ−θ∗)+∇Z(θ∗)T(θ−θ∗)/n1/2

Result:

n1/2(θn − θ∗) ⇒ H(θ∗)−1∇Z(θ∗)T

n(αn(θn)− αn(θ
∗)) ⇒ ∇Z(θ∗)H(θ∗)/2∇Z(θ∗)T

n1/2(αn(θn)− α(θ∗)) ⇒ Z(θ∗)

Evaluating at θ1, . . . , θm leads to the same c−2/(d+4) rate as before....

But "continuous" minimum converges faster and (even) faster than in
"typical" CRN setting
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Change-of-Measure

Assume that α(θ) = EθX where

Pθ(dω) = L(θ, ω)P(dω)

Then,
α(θ) = EθX = EXL(θ)

so the response surface can be estimated via

αn(θ) =
1
n

n∑
i=1

XiLi(θ)

Rarely preserves monotonicity, convexity, etc.
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For exponential families:

L(θ) = exp
(
θ

t−1∑
j=0

Zi − tψ(θ)
)

so αn(·) is very cheap to evaluate at many θ’s in this case (as
opposed to CRN’s).

variance in L(θ) tends to blow up "exponentially" in t and θ

αn(·) is rarely a good global approximation to α(·)
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Orthogonal Function Approximations

e.g. α(θ) =

∞∑
i=0

< α, ϕi > ϕi(θ)

where

< α, ϕi > =

∫
Λ
α(θ)ϕi(θ)w(θ)dθ

= EX(θ)ϕi(θ)
w(θ)
h(θ)

Estimate < α, ϕi > via Monte Carlo:

αn(θ) =

mn∑
i=0

1
n

n∑
j=1

Xj(θj)ϕi(θj)
w(θj)

h(θj)
(G89)

For Fourier basis and Λ = [0, 2π], rate of convergence is n−
1
2+

1
2p , when

α ∈ Cp.
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Bayesian Methods:

Approach: Put a Gaussian prior on space of functions with
domain Λ.

i.e. impose a probability P on C(Λ),C1(Λ),C2(Λ), etc.

Then, model α(·) as a realization of such a Gaussian random
field.

Compute posterior

P
(
α ∈ · | Xn(θi) : 1 ≤ i ≤ m

)
where

Xn(θi)
D≈ α(θi) +

Z(θi)√
n

Computationally expensive calculation

Can also compute posterior

P(α ∈ · | Xn(θi),∇Xn(θi) : 1 ≤ i ≤ m)

when sample gradients are present
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Shape-constrained Estimation:

Observe X1,X2, . . . ,Xm at locations θ1, θ2, . . . , θm

Assume
Xi = α(θi) + νi

for 1 ≤ i ≤ m, where α(·) is convex and the νi’s here satisfy
Eνi = 0.

Goal: Compute a (global) estimator for α(·)
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The Estimator

Let C = {g : Rd → R such that g is convex}

Given a “weight function” w(·), estimate α via the minimizer ĝn of

φn(g) =
1
n

n∑
i=1

(Xi − g(θi))
2w(θi)

s/t g ∈ C
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The Quadratic Program

min
gi,ξi

1
n

n∑
i=1

(Xi − gi)
2w(θi)

s/t gj ≥ gi + ξT
i (θj − θi), 1 ≤ i, j ≤ n

(ĝ1, . . . , ĝn) is unique

But the subgradients ξ̂1, . . . , ξ̂n are not unique

There are many convex functions ĝn that simultaneously minimize
φn(g) for g ∈ C
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To uniquely define ĝn, set

ĝn(x) = sup{g(x) : g ∈ C , g(θi) = ĝi, 1 ≤ i ≤ n}

ĝn(x) is finite-valued on conv(θ1, . . . , θn) (∞ outside
conv(θ1, . . . , θn))

ĝn(·) is a “non-local” estimator (every point influences ĝn(x)
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ĝn(x) can be computed as the optimal value ŷ to the linear program:

max y

s/t ĝj ≥ ĝi + ξT
i (θj − θi), 1 ≤ i, j ≤ n

y ≥ ĝi + ξT
i (y − θi), 1 ≤ i ≤ n

ĝj ≥ y + ξ̃T
i (θj − y), 1 ≤ j ≤ n
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Let L2(Λ) = {g : Rd → R such that Eg2(θ)w(θ) <∞} and set

< g1, g2 >= Eg1(θ)g2(θ)w(θ)

so ∥g∥ =
√
< g, g >.

.
Proposition
..
.
. ..

.

.C 2 = C
∩

L2(Λ) is a closed convex cone in L2(Λ)
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The minimizer g∗ of
min
g∈C 2

∥α− g∥

is unique and is characterized as the function g∗ for which

< α− g∗, g − g∗ >≤ 0

for all g ∈ C 2.
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Our main result...
.
Theorem (Lim and G (2012))
..

.

. ..

.

.

For each c ≥ 0,
sup
∥x∥≤c

|ĝn(x)− g∗(x)| → 0 a.s.

as n → ∞

previous results only for d = 1 (Hanson and Pledger (1976);
Groeneboom, Jongbloed, Wellner (2001))

first result on shape-constrained regression that deals with model
mis-specification
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Extensions

Domain of g can be a convex subset of Rd (conclusion is “uniform
convergence on compact subsets of interior”)

Generalizes to setting where
C = {g : Rd → R is convex and non-decreasing}
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Outline of Proof

By definition,
φn(ĝn) ≤ φn(g∗)

So,

1
n

n∑
i=1

(ĝn(θi)− g∗(θi))
2w(θi)

≤ 2
n

n∑
i=1

(Xi − g∗(θi))(ĝn(θi)− g∗(θi))w(θi)

If ĝn(·) were a fixed convex function in L2(Λ), SLLN would
guarantee convergence of RHS to

E(α(θ)− g∗(θ))(ĝn(θ)− g∗(θ))w(θ) =< α− g∗, ĝn − g∗ >≤ 0

Two problems:
ĝn not fixed
ĝn /∈ L2(Λ)
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So...
Show that (φn(ĝn) : n ≥ 1) is a.s. a bounded sequence
Use this to show that (ĝn(x) : n ≥ 1, ∥x∥ ≤ c) is a.s. bounded
This implies that ĝn is uniformly (in n) a.s. Lipschitz over
{x : ∥x∥ ≤ c}
Can form a finite ϵ-net h1, h2, . . . , hl that provides a uniform cover
for class of Lipschitz convex functions on {x : ∥x∥ ≤ c}
Each such hj can be convexly extended to Rd so that hj ∈ L2(Λ)

So,

2
n

n∑
i=1

(Xi − g∗(θi))(hj(θi)− g∗(θi))w(θi) →< α− g∗, hj − g∗ >≤ 0

But ĝn is ϵ-close to one of the hj’s over {x : ∥x∥ ≤ c}

So, lim
n→∞

1
n

n∑
i=1

(ĝn(θi)− g∗(θi))
2w(θi) ≤ 0

Because ĝn is uniformly Lipschitz on {x : ∥x∥ ≤ c}, this implies
uniform convergence on {x : ∥x∥ ≤ c}
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Shape-based methods can be extended to Lipschitz constraints on the
response function.

Open problem: Rates of convergence, particularly when the sampling
employs common random numbers
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Conclusions:

Response surface estimation is a challenging area for which many
approaches are possible:

Use of common random numbers is a central theme, and the
connection to Guassian random fields and the degree of
smoothness in the sample surface plays a key role

Shape-constrained estimation is an interesting means of dealing
with the infinite-dimensional aspect

The cost of evaluating the response surface at a "new point" can
be substantial, and a good choice of "interpolant" can be
important

Many open problems remain
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