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Science. 1966 Apr 15;152(3720):363-366.

Evolution of the Structure of Ferredoxin Based on Living Relics of
Primitive Amino Acid Sequences.

Eck RV, Dayhoff MO.

The structure of present-day ferredoxin, with its simple, inorganic
active site and its functions basic to photon-energy utilization,
suggests the incorporation of its prototype into metabolism very
early during biochemical evolution, even before complex proteins
and the complete modern genetic code existed. The information in
the amino acid sequence of ferredoxin enables us to propose a

detailed reconstruction of its evolutionary history. Ferredoxin has
evolved by doubling a shorter protein, which may have

contained only eight of the simplest amino acids. This shorter
ancestor in turn developed from a repeating sequence of the amino

acids alanine, aspartic acid or proline, serine, and glycine. We
explain the persistence of living relics of this primordial
structure by invoking a conservative principle in evolutionary
biochemistry: The processes of natural selection severely
inhibit any change a well-adapted system on which several
other essential components depend.
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Fig. 3. Proposed origin and evolution of ferredoxin (see text for fuller details). Row 1: Originally, in an extremely primitive or-
ganism, a short sequence of four of the simplest amino acids (alanine, aspartic acid, serine, and glycine) could be produced, Row
2: This sequence lengthened by doubling of the genetic material, and one discontinuity occurred {underlined). Row 3: The genetic
code becoming more versatile, mutations (underlined) occurred, but only to relatively simple amino acids (the same four, plus
cysteine, valine, proline, and glutamine). Iron sulfide was attached to the cysteines, which constituted the “active site™ of the
respiratory function of this primitive ferredoxin. This configuration still persists. Row 4: By “chromosome™ aberration, the whole
chain doubled. Row 5: The present more intricate genetic code having evolved, further mutations (underlined) to more complex
amino acids occurred. The last three links were deleted. The result was the present sequence of ferredoxin from €. pastenrianum
(4).
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remaining. The diheme peptide of Chro- Thus, in organisms still living there
matium may possibly be such a case may exist biochemical relics of the era

encompassing the origin and evolution
of the genetic mechanism. Determina-
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Biochem Biophys Res Commun. 1970 May 22;39(4):757-65.

The occurrence in proteins of the tripeptides Asn-X-Ser and Asn-X-
Thr and of bound carbohydrate.

Hunt LT, Dayhoff MO.

The 101 occurrences of the tripeptides Asn-X-Ser and Asn-X-Thr in the
available protein sequence data are tabulated; carbohydrate is found,
attached to the asparagine, in not more than 20 of the 101
tripeptides. A statistical analysis of the data from all completely
sequenced proteins shows that the observed frequency of occurrence
of the two kinds of tripeptides is only about 65% of the expected.

This lowered frequency is evidence for a newly
postulated kind of limitation—which we call a
“restricted sequence” —imposed by natural
selection on the primary structure of proteins.

We suggest that the frequency of occurrence of the Asn-X-Ser/Thr tripep-
tides in the available protein sequences, which is considerably lower than ex-
pected, reflects a restriction by natural selection on the occurrence of the
two tripeptides in proteins. Selection would reject a protein which acquired
the tripeptide(s) by mutation, if carbohydrate, bound to the tripeptide by
the enzyme, subsequently interfered with a normal interaction or function of

the protein,
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Many of the sequenced proteins
were orthologs from different
J Mol Evol. 1973;2(2-3):99-116. organisms

Eukaryote evolution: a view based on cytochrome c sequence data.
McLaughlin PJ, Dayhoff MO.
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Fig. 2. The detailed cytochrome ¢ evolutionary tree. The order of branching for the five kingdoms is the
same as configuration 1 in Fig. 4. The progression of time is toward the top of the tree. The lengths of

the branches are drawn in proportion to the numbers beside the branches, which are PAMs or Accepted Point
Mutations estimated to have occurred on these branches
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Searching the growing sequence
database...

Biochem Biophys Res Commun. 1974 Oct 8;60(3):1020-8.
Epidermal growth factor: internal duplication and probable
relationship to pancreatic secretory trypsin inhibitor.

Hunt LT, Barker WC, Dayhoff MO.

Biochem Biophys Res Commun. 1976 Apr 19;69(4):852-9.
Sequence similarity between cholera toxin and glycoprotein
hormones: implications for structure activity relationship and
mechanism of action.

Ledley FD, Mullin BR, Lee G, Aloj SM, Fishman PH, Hunt LT,
Dayhoff MO, Kohn LD.

Biochem Biophys Res Commun. 1980 Jul 31;95(2):864-71.
A surprising new protein superfamily containing ovalbumin, antithrombin-lii,

and alpha 1-proteinase inhibitor.
Hunt LT, Dayhoff MO.
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Rapid similarity searches of nucleic acid and protein
data banks.

Wilbur WJ, Lipman DJ.
Proc Natl Acad Sci U S A 1983 Feb;80(3):726-30

With the development of large data banks of protein and nucleic acid
sequences, the need for efficient methods of searching such banks for
sequences similar to a given sequence has become evident. We present an
algorithm for the global comparison of sequences based on matching k-
tuples of sequence elements for a fixed k. The method results in substantial
reduction in the time required to search a data bank when compared with
prior techniques of similarity analysis, with minimal loss in sensitivity. The
algorithm has also been adapted, in a separate implementation, to produce
rigorous sequence alignments. Currently, using the DEC KL-10 system, we
can compare all sequences in the entire Protein Data Bank of the National
Biomedical Research Foundation with a 350-residue query sequence in less
than 3 min and carry out a similar analysis with a 500-base query sequence
against all eukaryotic sequences in the Los Alamos Nucleic Acid Data Base in
less than 2 min.



Cancer Gene Meets Its Match
New York Times July 3, 1983

Waterfield MD et al., Nature 1983 Jul 7;304(5921):35-39

Doolittle RF et al., Science 1983 Jul 15;221(4607):275-277
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Ehe New Jork Times

“Now a serendipitous computer
search has matched it with the
product of a gene that causes
cell growth to run amok - a
cancer gene found in a monkey
virus. The discovery, which will
be reported this month in the
journals Science and Nature,
may provide a key link in the
chain of events that causes
cancer.”



An earlier, more subtle discovery...

Viral src gene products are related to the catalytic chain of
mammalian cAMP-dependent protein kinase Barker WC,
Dayhoff MO. PNAS 1982 May;79(9):2836-2839

Query: 113 YAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKR---VKGRTWT---LC 166
Y+ 4V +LHS +++ DLKP N+LI +0Q +++DFG +++ ++GR + +

Sbjct: 125 YSLDVVNGLLFLHSQSILHLDLKPANILISEQDVCKISDFGCSQKLQDLRGRQASPPHIG 184

Query: 167 GTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVR 223

GT + APEI+ + D ++ G+ +++M P ++ +P + +V+ +R
Sbjct: 185 GTYTHQAPEILKGEIATPKADIYSFGITLWQMTTREVP-YSGEPQYVQYAVVAYNLR 240

Biology not Algorithms
- compare proteins, not DNA
- must detect similar amino acids not just identities
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Science. 1985 Mar 22;227(4693):1435-41.

Rapid and sensitive protein similarity searches.

Lipman DJ, Pearson WR.

An algorithm was developed which facilitates the search for similarities between
newly determined amino acid sequences and sequences already available in
databases. Because of the algorithm's efficiency on many microcomputers, sensitive
protein database searches may now become a routine procedure for molecular
biologists. The method efficiently identifies regions of similar sequence and then
scores the aligned identical and differing residues in those regions by means of an
amino acid replaceability matrix. This matrix increases sensitivity by giving high scores
to those amino acid replacements which occur frequently in evolution. The algorithm
has been implemented in a computer program designed to search protein databases
very rapidly. For example, comparison of a 200-amino-acid sequence to the 500,000
residues in the National Biomedical Research Foundation library would take less than

2 minutes on a minicomputer, and less than 10 minutes on a microcomputer (IBM
PC).

Use Wilbur-Lipman for initial guesses, then
rescore using Dayhoff Matrix


http://www.ncbi.nlm.nih.gov/pubmed?term="Lipman DJ"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Pearson WR"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract

J Mol Biol. 1990 Oct 5;215(3):403-10.

Basic local alignment search tool.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.
National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health, Bethesda, MD 20894.

A new approach to rapid sequence comparison, basic local
alignment search tool (BLAST), directly approximates alignments
that optimize a measure of local similarity, the maximal segment
pair (MSP) score. Recent mathematical results on the stochastic
properties of MSP scores allow an analysis of the performance of
this method as well as the statistical significance of alignments it
generates. The basic algorithm is simple and robust; it can be
implemented in a number of ways and applied in a variety of
contexts including straightforward DNA and protein sequence
database searches, motif searches, gene identification searches,
and in the analysis of multiple regions of similarity in long DNA
seqguences. In addition to its flexibility and tractability to
mathematical analysis, BLAST is an order of magnitude faster
than existing sequence comparison tools of comparable
sensitivity.

Maximal Segment
Pair was local
ungapped optimal
alignment — using
Dayhoff Matrix

Karlin’s statistics for MSP’s allowed direct
use of Dayhoff matrix and now could assess

odds for the guessing...


http://www.ncbi.nlm.nih.gov/pubmed?term="Altschul SF"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Gish W"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Miller W"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Myers EW"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Lipman DJ"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402.
Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda, MD 20894, USA. altschul@ncbi.nlm.nih.gov

The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities.
For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here
permits the execution time of the BLAST programs to be decreased substantially while enhancing their
sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new
heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three
times the speed of the original. In addition, a method is introduced for automatically combining statistically
significant alignments produced by BLAST into a position-specific score matrix, and searching the database
using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately
the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but
biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members
of the BRCT superfamily.

Everyone was publishing papers about methods
more sensitive but significantly slower than BLAST
— why not just search the database multiple times
using hits to improve model?

Generate a protein family-specific & position-
specific similarity matrix...
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Improving sequence similarity searching...

All: 1 | Free Full Text: 1 | Review: 0

[T 1:Proc Natl Acad Sci U S A, 2009 Mar 10;106(10):3770-5. Epub 2009 Feb 20.

Sequence context-specific profiles for homology searching.

Biegert A, Siding J.

Gene Center Munich and Ludwig Maximilian University of Munich, Feodor-Lynen-Strasse 25, 81377
Munich, Germany.

Sequence alignment and database searching are essential tools in biology because a protein's
function can often be inferred from homologous proteins. Standard sequence comparison
methods use substitution matrices to find the alignment with the best sum of similarity scores
between aligned residues. These similarity scores do not take the local sequence context into
account, Here, we present an approach that derives context-specific amino acid similarities from
short windows centered on each query seguence residue. Our results demonstrate that the
seguence context contains much more information about the expected mutations than just the
residue itself. By employing our context-specific similarities (CS-BLAST) in combination with NCBI
BLAST, we increase the sensitivity more than 2-fold on a difficult benchmark set, without loss of
speed. Alignment guality is likewise improved significantly. Furthermore, we demonstrate
considerable improvements when applying this paradigm to sequence profiles: Two iterations
of CSI-BLAST, our context-specific version of PSI-BLAST, are more sensitive than 5 iterations of
PSI-BLAST. The paradigm for biological sequence comparison presented here is very general. It
can replace substitution matrices in sequence- and profile-based alignment and search
methods for both protein and nucleotide seguences.

PMID: 19234132 [PubMed - indexed for MEDLINE] PMCID: PMC28455810

Why Is it better?

FREE Full Text Article at Fid= Ftull text arti II] Links
SR wew.pnas. org in PubMed Central -

ot

Pu med

Try the redesigned PubMed

Related articles

¢ Large-scale comparison of protein sequence alignment
algorithms with structure alignments. [Proteins. 2000]

p Context-specific amino acid substitution matrices and their use
in the detection of protein homalogs. [Proteins. 2008]

p ProClust improved clustering of protein sequences with an
extended graph-based approach. [Bininformatics. 2002]

3 Sensitive methods for determining the relatedness of
proteins with limited sequence hor [Curr Cpin Biotechnol. 1994]

3 Protein database searches using compositionally
adjusted substitution matrices. [FEBS J. 2005]
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Method of context-specific sequence comparison

4
R
I
M

malched sequence

B —
IRTHTGEKPFACDICGRKFARSDE

Query sequence -

e o

Library of
K context
profiles

Mix central
profile columns

Context-specific
sequence profile
for query sequence

THIRTHTGEKPFRCOICGREFARSOE
N E—

NCBI PSI-BLAST

xp

£-4-3-2-1012345

Biegert A, S6ding J PNAS 2009;106:3770-3775

©2009 by National Academy of Sciences | | ﬂ é i i



CDD-PSSM

Query + CDD =) RPS-BLAST

Residue counts for matched CDs

PSSM Engine

Combine residue
counts and
compute PSSM

|

PSI-BLAST database search




Experiments

e Hits that belong to the same superfamily as
guery are considered true positives

e Hits with the same fold as query but different
superfamily are ignored

* All other hits are considered false positives



True vs. false positives for SCOP/ASTRAL 1.75
(9705 queries)
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True vs. false positives for queries from SCOP families
of size 1 in CS-BLAST benchmark (1874 queries)
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How often would one find matches?

How many protein families would there be?

Prior to the genome project, there was only
a small percentage of genes from the
genomes of a number of evolutionarily
distant organisms ( e.g. human, fly, yeast,

e.coli )

Unexpected similarities should be extremely rare.



Hubris, the Genome Project, and
Protein Families

Chothia, C. (1992). One thousand families for the molecular
biologist. Nature, 357, 543-544.

Green P, Lipman D, Hillier L, Waterson R, States,D, and Claverie JM (1993).
Ancient Conserved Regions in New Gene Sequences and the Protein
Databases. Science, 259, 1711-1716.

ACR = similarity detected between sequences from
distantly related organisms
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Ancient Conserved Regions in
New Gene Sequences and the
Protein Databases

Philip Green,* David Lipman, LaDeana Hillier, Robert Waterston,
David States, Jean-Michel Claverie

Saets of new gene sequences from human, nematode, and yeast were compared with each
other and with a set of Escherichia colf genes in order to detect anciant evolutionarily
conserved regions (ACRs) in the encoded proteins. Nearly all of the ACRs so identified
ware found to be homologous to sequences in the protein databases. This suggests
wmnﬂyknmmtdnsmﬂmdrlndudermmmnw ACRs and that

than rarely expressed genes. It Is estimated that there are fewer than 900 ACRs in all.'S

Undml:andi:nn' the funcrions and scruc-
tures of the array of proteins expressed in
living organisms is a fundamental goal of
molecular biology. Our hope of attaining
this goal stems largely from the unifying
theme of shared evolutionary ancestry: re-
lated organisms have similar proteins and,
within an organism, different proteins of
related function are often wholly or partly
similar in sequence, reflecting gene dupli-
cation and exon shuffling (1) during evolu-
tion. Such similarities can provide impor-
tant functional insights, and consequently
an important step in characterizing any new-
ly sequenced gene is to compare its encoded
protein sequence with the protein sequence
dal in order to for conserved
regions shared with known proteins.

The present study uses extensive new sets
of gene sequences to several general
questions abour conserved regions: how
many of these regions exist, what fraction
has been discovered, and what proportion
and types of proteins contain them. We focus
on ancient conserved regions, or ACRs, de-
tected through similarities berween proteins
from distantly related organisms. Ower long
evolutionary periods the less constrained
portions of the sequences will have signifi-
cantly diverged; consequently, the regions of

P. Gresn, L. Hillier, and A, Waterston are in lhe
Ganetics Depariment, Washington Unsversity Medical
School, 51 Lous, MO 83110, D. Upman, 0. States,
and J-M. Claverie are af the Mational Center for
Biotechnology Information, Mational Library of bedi-
cine, Netional Insbbutes of Heakh, Bethesda, MD
20854,
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similarity are usually those of greatest strucS
tural or functional significance. ACRs ofterfg’
comespond to specific domains (or motifsE
present in a variery of proteins, such as :lmf"
finger DMA binding domains (2), or tﬂb
enzyme active sites, but they can also com:
prise most or all of the sequence of a slnglg
highly conserved protein or protein farruly,
such as actins and histones. Conserved res
gions of all of these types have been =xm§
sively cataloged (3, 4). Because the degree o
similarity between two related proteins teq
flects not only the amount of time since tl'l.u'%
last common ancestor but also their rares
sequence evolution, which can vary grearlE
for different proteins (5), not all proteing
need contain ACRs

The precise definition of an ACR de-
pends on its required age and distribution
among organisms and on the method used
to detect sequence similariries. The present
study involves ACRs thar antedate the
radiation of the major animal phyla |some
580 to 540 million vears ago (6)] and that
are present in diverse eukaryotes. We de-
rected similarities by using the sequence
alignment program BLAST (7) with a score
cutoff sufficiently high to dlstmguuh confi-
dently true homologies from background in
darabase searches (8). Flgun: I shows a
representative BLAST alignment at this
score level. Typically, a BLAST compari-
son of two related proteins reveals several
(gap-free) aligned segments, separated by
unaligned regions; in such cases we consid-
ered the entire collection of aligned seg-
ments o constitute a single conserved re-
gion, provided the segments always tended

17mn

Lots of new sequence data — how
many conserved protein families do
we find that are not already in the

databases?

Sets compared Matching ACRs ACRsin
Sequences database
worm ESTs, human ESTs 77, 66 34 31 (91%)
worm ESTs, yeast ORFs 23,13 9 8 (89%)
worm genes, human ESTs 17,17 12 12 (100%)
worm genes, yeast ORFs 6,4 4 3 (75%)
human ESTs, yeast ORFs 14,13 10 10 (100%)

~1000 different ACR’s
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and multiply represented C. slegans ESTs. [Doubly
triply represented ESTs al least two others, by the
ed into those with database ACRs and those without
and within sach subgroup matches with the other
described [(8) and Table 1).

EST represaentation

Single Double Triphe
310 (675) 144 (154) 116(73)
34N 23 @) 1? i'DJ
15 (1) 5 (0

67 (1) 46 [0} 22 toJ
a2 (1) 58 (13) 46 (24)
250 (494) 115 (108) g2 (54)

likely considerable variation among ACRs,
with some represented only once and others
represented many Hmes; a more detailed
piceure will emerge as the sequencing
projects progress. Itwullalsobeoftnmes:wg
learn what proportion of the ACRs mN
specific to metazoans.

Expression Level and
Degree of Conservation

To better understand the impact of expres-
sion level bias in the EST sees, we looked for
a possible relation berween expression level
and ACR presence. Because detailed expres-
sion dara on these clones are not yet avail-
able, we assumed that to a first approxima-
tion genes represented in multiple indepen-
dent clones in the cDNA libraries are,
average, expressed at higher levels than sin-
gly represented genes. Analyses were con-
fined to the C. elegms ESTs (29), which =
were classified as singly l (not™
overlapping any other EST] or muluplv%
represented (overlapping at least one other &
EST). We found (Table 4) that datzlmt‘:
ACRs are present in a substantially hmhau:
fraction of the multiply represented ESTs=
(260/487, or 53%) than of the singly repre-
sented ESTs (310/985, or 31%). A similar
trend holds for the C., elegans ACRs detected
by similarity to the other sequence sets (30).
Moreover, multiply represented ESTs have
generally higher similarity scores with their
distant homologs in the darabase than do
singly represented ESTs (Fig. 2). The higher
proportion of ACRs among multiply repre-
sented ESTs thus appears to be at least in
part a consequence of their generally sron-
ger similarivies with distantly related penes
and cannot simply be explained by a bias in
the database itself toward moderately to
highly expressed genes (31).

These rtesults suggest that moderately
expressed proteins have, on average, been
more highly conserved in sequence aver
leng evolutionary periods than have rarely
expressed ones and in particular are more
likely to contain ACRs. This is presumably

m W, smencemag org on April 2,

Fig. 2. Distribution of homalogy scores lor
dalabase ACHs in singly and multiply repee-
sented C. elegans ESTs. For each EST hanving a
cross-phylum match against SWISS-PROT. the
average score of all such malches was taken to
indicate the degree of conservation of the cor-
responding ACR. The cumulative fraction of
ACRs having average scores less than a given
value is plotied. Relatvely more of the multiphy
represented ESTs have average scores ex-
ceading any given value,

attributable in part 1o higher selective pres-
sures to optimize the activites and struc-
tures of these proteins and to minimize
undesired interactions with other cellular
components. Given the indirectness of our
method of assessing expression level, more
detailed expression data on these clones
will be required to confirm and accurately
quantify this correlation.

Sequences Without ACRs

An early finding of the genome sequencing
projects was that the majority of genes are
not similar to anything in the databases (11,
12). It has usually been assumed that this
reflects the relative incompleteness of the
databases rather than the absence of highly
conserved regions in these genes. This as-
sumption now appears incorrect. Because
30% or fewer of the genes in the genomic
sets we analyzed contain database ACRs,
and perhaps 85% of ACRs are present in the
databases, the fraction of genes that contain
ACRs is roughly 40% (0.30/0.85) or less.
The other 60%—or over %% of those se-
quences that are not currently similar to a
distanily related sequence in the databases—
do not have ACRs and must therefore cor-
respond to proteins or protein regions that
cither evolved more recently than the meta-
zoan radiation or evolved prior to it but have
not been srongly conserved (5). In either
case, they are unlikely to have strong simi-
larities to any genes from distantly related
organisms. For these sequences, homologies
will be detecrable only with the use of more
sensitive methods of analysis or by compar-
isons with genes from more closely relared
isms.
Many of these genes may have ancient

functions despite their lack of sequence con-
servation. It is unlikely that the sequence
requirements for a minimally active protein
of any given function could be particularly
stringent; otherwise, given the improbability
of a specific sequence of any significant
length arising solely by chance mutation, an
appropriate substrate for selection to begin
acting upon would never have arisen. Al-
though optimization of activity can entail
much more stringent sequence require-
ments, such optimization may only have
been strongly selected for in a minority of
the proteins in an organtsm., Thus, the
majority of protein sequences may be rela-
tively unconstrained and as a result may be
drifting too rapidly to retain detecrable sim-
ilarities over long evolutionary periods. For
this reason, one should not asume that
ACRs necessarily represent all of the ances-
tral functional domains. Nor do they corre-
spond to the universe of ancestral exons (32)
because the majoriry of exons do not appear
to be highly conserved. In fact, the differen-
tial rate of evolution of different protein
regions considerably complicates the task of
estimaring the ancestral exon num

In summary, it appears that the number
of ACRs is relatively small—far smaller than
the number of genes in a eukaryotic ge-
nome—and that most ACRs are represented
among currently known proteins. We would
emphasize, however, that more sequence
dara will be required to improve our under-
standing of conserved protein regions.
estimates above suggest thar roughly one-
third of ACRs have not yet been discovered
because they are represented in only one
phylum (or not at all) in the current data-
bases. Detection of less highly conserved
ACRs may only be possible when they are
represented in multiple distantly related se-
quences. Finally, to increase our understand-
ing of sequences that lack ACRs, it will be
important to acquire sequence {nformation
from closely related organisms.
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ACR’s more likely

for genes with

higher

expression

(i.e. lower

propensity for

gene loss)
Gene expression level
positively correlated with
higher similarity scores (i.e.
negatively correlated with
evolutionary rate)

A significant fraction of
the genes of an organism
have a relatively high
evolutionary rate...



Earliest Estimates of Number of
Protein Families - ~1000
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Atlas of Protein Sequence and Structure, Vol.
5, Supplement 3 (1978) pg. 10:

“It has been estimated that in humans there are
approximately 50,000 proteins of functional or
medical importance. ... A landmark of molecular
biology will occur when one member of each
superfamily has been elucidated. At the present
rate of 25 per year, this will take less than 15
years.”



Fed Proc. 1976 Aug;35(10):2132-8.

The origin and evolution of protein superfamilies.

Dayhoff MO.

The organization of proteins into superfamilies based primarily on their
sequences is introduced: examples are given of the methods used to cluster
the related sequences and to elucidate the evolutionary history of the
corresponding genes within each superfamily. Within the framework of this
organization, the amount of sequence information currently and potentially
available in all living forms can be discussed. The 116 superfamilies already
sampled reflect possibly 10% of the total number. There are related proteins
from many species in all of these superfamilies, suggesting that the origin of
a new superfamily is rare indeed. The proteins so far sequenced are so
rigorously conserved by the evolutionary process that we would expect to
recognize as related descendants of any protein found in the ancestral
vertebrate. The evolutionary history of the thyrotropin-gonadotropin beta
chain superfamily is discussed in detail as an example. Some proteins are so
constrained in structure that related forms can be recognized in prokaryotes
and eukaryotes. Evolution in these superfamilies can be traced back close to
the origin of life itself. From the evolutionary tree of the c-type cytochromes
the identity of the prokaryote types involved in the symbiotic origin of
mitochondria and chloroplasts begins to emerge.



http://www.ncbi.nlm.nih.gov/pubmed?term="Dayhoff MO"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract

Criteria for Clustering Identification
Sequences Of Cluster

Superfamilies Probability of Similarity by Number
Chance<10®

Families <50% different Letter

Subfamilies <20% different Paragraph

Atlas entries <5% different semicolon

Not particularly evolutionary perspective but only tiny sample from a
number of different organisms...
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69. Thymopoietin [l
A, Thymeopaietin 11
Bovine
70. Thymosin alphaq
A, Thymasin alpha,
Bavine
71. Calcitonin
A, Calcitonins
Human; rat
Pig; bovine, sheep
Eel; salmon 1;s5almon 2 and 3
72. Parathyrin
A, Parathyrin
Bovine; pig
73. Glucagon related
A. Glucagon
Pig, bovine, Arabian camel, human, rabbit,
rat; duck, turkey, chicken
B. Gastric inhibitory polypeptide
Pig
C. Secretin
Pig
D. Wasoactive intestinal peptide
Pig; chicken
E. Pancreatic hormaone
Chicken
F. Pzncreatic hormone
Bovine
74. Motilin
A. Motilin
Pig
75. Proinsulin related
A. Insulin
Human®, rabbit, hamster, pig®, horse®,
elephant, bovine®, sheep®, camel, goat,
sei whale, sperm whale, finback whale, dog,
spiny mouse, rate 15 and 2°, mouse 1 and
2: chicken, turkey: duck®; rattlesnake
Guinea pig®
Caypu
Cad, toadfish 1 and 2; angler fish, tune 2;
bonito
Atlantic hagfish
B. Insulin-like growth factors
| Human
1 Human
C. Relaxin
Pig
76. Gastrin related
A, Gastrin
Human; pig

indicated, the C-peptide, end in some cases

« cammanne e knmun

5 For those spec

B. Cholecystakinin-pancreazymin
Pig
77. Paragonial peptide
A. Paragonizl peptide PS-1
Fruit fly

Toxins

78. Snake venom toxins [proteroglyphs)
A. Long neurotoxing
Formosan banded krait 1
Broad-banded blue sea snake 1
Middle Asian cobra 1
Forest cabra 1
King cabra 2; king cobre 1
Foresi cobira 2; Ethiapian cobra 1; Cape
cobra 1; Thailand cobra 1 [ndian cobra 1
Jameson’s mamba 1
VWest African green mamba 1;W. African
green mamba 2
Black mamba 1; black mamba 2
E. Venom proteins
Banded Egyptian cobra CM-13b; forest
cabra 55Cyy
C. Short toxin 1
Green mamba
D. Short toxing 2
Green mamba
West African green mamba
E. Short neurotoxins
Black mamba 1; Jameson's mamba 1, West
African green mamba 1
Banded Egyptian cobra 3 and 4
Banded Egyptian cobra 2, Cape cobra 1;
farest cobra 1;ringhals 1; blackneck
spitting cobra 1; Middle Asian cabra 1,
Naja naja phitippinensis 1, Naja naja
samarensis 1; Cape cobra 2, banded Egyptian
cobra 1; Formosan cabra 1; ringhals 2
Broad-banded biue sea snake 1
Beaked sea snake 1, yellow-bellied sea snake 1
Reef sea snake 1
F. Cytotoxins
{ndian cobra 2, Formesan cobra 3; Middle
Agian cobta 2; Formosan cobra 2 and 4;
Indian cobre 1; forest cobra 1; Cambodian
cobra 1, Formosan cobra 1; Middle Asian
cobra 1; Mozambique cobra 4; banded
Eayptian cobra 10; banded Egyptian cobra
9: banded Egyptian cobra 1, Cape cobra 1;
Cape cobra 3; banded Egyptian cobra 3
and 8; banded Egyptian cobra 4; banded
Egyptian cobira 2; Cape cobra 2; banded
Eayptian cobra b, 6, and 7
Mozambique cobra 1, blackneck spitting
cabra 1; Mozambigue cobra 2;
Maezambique cabra 3

Ringhals 1
Banded Egyptian cobra 11
Forest cotirs 3; forest cobra 2
79. Snake venom toxin {solenoglyphs)
A, Crotamine
South American ratilesnake
80. Arthropod neurotoxins
A, Neuratoxin
I Scorpion (Androctonus)
B. Neurctoxin
|1 Scorpion [Androctanus)
C. Neuratoxins
[ North American scorpion
1 North American scorplon; 2 M. Am.
scorpion; 3 N, Am. scorpion
D. Wast-cell degranulating peptide
Haney bee
Hemaolytic peptides
A, Melittins
Major Honey bee®, major Indian bee; Ceylon
bee; minor honey bee; free-nesting bee
B. Bombinin
Unks
Heteronemertine worm neurotoxin
A Neuratoxin B-1V
Heteronemertine worm
83. Sea anemone toxin
A. Toxins
1F Anemonia sufeata; Anthopleurin A
Anthepleura xanthogrammica
84. Plant toxins
A. Mistletoe toxins
Viscotoxins A2, B, 1-PS European
mistletoe; viscotoxin A3 European
mistletoe

1.

N

Phoratoxin Califarniaz mistletoe
B. Purathionins
A-l Wheat; A-ll wheat
85. Antibacterial proteins
A. Antibacterial substance A
Streptomyees carzinostaticus F41
B. Neocarzinostatin
Strepromyrces carzinostaticus FA1
86. Enterotoxin
A. Enterotoxin B
Staphylocaccus sureus 56
87. Cholera enterotoxin beta chain
A. Cholera enterotaxin beta chain
Vibrio cholerae

5 .
The complete promelittin sequence is known,
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Immunoglobulin Related Proteins

88. Immuneglobulin variable (V) regions
A. lg kappa chain V regions
Human Ni
Human Ag; Au; Bi; Car;
Dee; Eu; Gal; Hau; Ka;
Lay; Ou; Rei; Roy; Sew
Human Cum; Fr; Mil; Tew  Subgroup |

Subgroup |

Human BE; Pom; Ti Suboroup |11
Human Len Subgroup 1V
Mouse MOPC 21; MPC 11

Mouse MOPC 417

Wouse MOPC 173

Mouse 70; MOPC 321

Rat 5211

Rabbit 2717

Rabbit 3315

Rabbit 3368

Rabbit 3374; 4135; BS-1; BS-B; K-25
Rabbit 3547

Rabbit K16-1687
B. Ig lambda chain V regions, human

Ha

New

Newm Subgroup |
Var

Bo; Bur; Mcg; Vil

MNei Subgroup 1
Tro; Boh

Sh Subgroup 11
Bau; X

Kern Subgroup IV
Del Subgroup V

C. Ig lambde chain V regions

Mouse MOPC 104E7, Jb58, 5104, 8178;
MOPC 315

Pig

D. lg heavy chain V regions, human subgroup |
Eu
Nd

E. Ig heavy chain V regions, humen subgroup 1!
Cor
Cawe
He
Ou

F. Ig heavy chain V region, human subgroup i
Newm

_—

7
The precursar sequence is also known
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Science. 1997 Oct 24;278(5338):631-7.

A genomic perspective on protein families.
Tatusov RL, Koonin EV, Lipman DJ.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda, MD 20894, USA.

In order to extract the maximum amount of information from the rapidly
accumulating genome sequences, all conserved genes need to be classified
according to their homologous relationships. Comparison of proteins
encoded in seven complete genomes from five major phylogenetic lineages
and elucidation of consistent patterns of sequence similarities allowed the
delineation of 720 clusters of orthologous groups (COGs). Each COG consists
of individual orthologous proteins or orthologous sets of paralogs from at
least three lineages. Orthologs typically have the same function, allowing
transfer of functional information from one member to an entire COG. This
relation automatically yields a number of functional predictions for poorly
characterized genomes. The COGs comprise a framework for functional and
evolutionary genome analysis.

More sequence data should make
the job of annotation easier...


http://www.ncbi.nlm.nih.gov/pubmed?term="Tatusov RL"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Koonin EV"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Lipman DJ"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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L 5

eh my 18 ehgp__ v 5 e_gpcm__ 4

cmy 13 e_gpc_y 2 _h _cm_ 3
e my 7 e_p_ Y 1 eh_p m_ 2
__gpcmy 4 e gp ¥V 1 ehgp m 2
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eh _p_my 2 _h c ¥ 1
ehgp_my 2 —gpcy 1
e_gpcmy 2 _hgp v 1
—_gp_my 1
e_gp_my a 8
eh pcmy 1
Sum 323 215 122 60
COGs(%) 45 30 17 8



Have we been asking the question
correctly?

How many protein families would
there be?

Or
How many distant taxa?



Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80. Epub 2009 Apr 7.
Inaugural Article: The universal distribution of evolutionary rates of genes and distinct characteristics of
eukaryotic genes of different apparent ages.
Wolf YI, Novichkov PS, Karev GP, Koonin EV, Lipoman DJ.

- Homsa

= Drome

— Aspfu
Salsp
Bursp

= Metma

0.1 1 10

normalized evolution rate (log scale)


http://www.ncbi.nlm.nih.gov/pubmed?term="Wolf YI"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Novichkov PS"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Karev GP"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Koonin EV"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Lipman DJ"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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Slowly evolving
proteins are
being
generated all
the time...



Animals

D.
HILLIS/UNIVERSITY
OF TEXAS, AUSTIN

Science, 2003,
300:1692-1697

Bacieria
Archaea
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16 Contractile System Proteins

uTHE BIYOSIN LIGHT CHANS
Fabrbi®
™, MLKELI  Rebbt
™, Fiabbit E\“‘m
LIET 44

CALCIUM-DEFENCE \
REGUL ATOR PROTEIN

Bawrme_

2;\» isation srofucing ewpsfaic ENEL
Cupicenion ofoducing slungoled genss
Bpprosimataly BOC

foreors o

Figure §7. Evalutionary tres of the tropanin © superfarmil
sapliest cuenis showyn are twa intarna! duplicstions that produced &
gene faur times g long as Lhe gncestral gene, which probably coded
for & caleivn-binding peptide of shout 38 sming 2cicgs. These ifr
wrnal duplcations &ng one ar moce af the subsequent dualice-
tians 10 prodiece sepsfEtR gRnes probally occurred moprokanyois
aneestors, A arly duplication gawe rise to the hvd magor branches
af the sree, On onE sice pafvelbumin and the caleiume-binding gro
wein diverged together fram twroponin O Thess genes than musi
hgue ol the amine-wermine poriion of the recoubied arnoestod.
Becsuge the line 1@ boving cardisc woponin C ase bofare the
divergence of skewial muscle wopenin © of (rog, chicken, and
rabsbir from oig aresther, & gene duplication i represented rather
then @ species divergence. Tha rete of change of tropontn C i
gerimated o be 4.5 #ccepied point mutstions per 100 regidues
per 100 million years, f woponen © hes been chamging at this
unususliy show rete sincs the divergence of the caidiae and shebelal
wiuscle forms, the gene duplications thet ellowed the specializetion
of cardias and skeloml muscie may have accurred B hillion Yesre
g0, On the other mejor branch of the tres, the first duplication
produced the genes for the sneestral myosin light chein and o7
the calclur-dependent reguister protsin, This protain is found in
many tissues and it reguistes verious calcium-gependent events
such as secrption, movement, sell divisian, anc metabalie activity.
Becguse it is the mast slowby changing protein of this siperfsmily.
ite funciion progssty corresponds mest clossly to the tunction af
the common ancestor of these proteing. The next duplicetion 1o
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aceur geve rise to the two main tyoes of myosin light chaing. The

mpasin A1 light chein is of recent origin as i s lese thar 4% dif-
farent fram the A2 chain, excapt for an smino-terminal 4 1-refidus
segrmend of wnususl composition, which ves not counind in con-
structing the trea. This free was derlved from matrices of estimated
numisers af eming scid Feclacements benween the sequende. It i
a composite of topatogies cetermingc for the parealbumins slang,
for the sequences with four homolooy regiafe, snd for hall-chaing
of these comoersd with the pervalbuming and cas iurn-binging
protein, By sligning the shorter sequences with halves of the
janger sequenees and CONErecting topologies that seperately re-
flect the swelution of both halves of The longer cheins, we deler-
mined whare the point of estliest Time was located and therefore
wivere to place the trumk on the tree; the order of divergence of
the branches 1o T pervatbuming and calcium-bmding protein
when became clesr, & wery slightly smatler tree was obtaned by
imterchanging the hranches 1o frog and chicken skelatsl rscle
traponin C, &n srangement that dissgrees with sccepted ovidence
an the ordar of divergencs of theee spsckas, The branching ordes wf
1he fish parvalburming i not well resoived and 8150 does nat Con-
torm to thel sxpected from hislogicel evidence, it is clear dha3
caveral duplicstions of the parvelbumin gene have octurred in
rhese species. Dmby the two most clestly established dupfizafions
we ehown, The Branch lengths sre proportions! 1o the inferred
numbar of moweions per 100 residues; these numbers are shown
far several branches. The lengthe of very long branches and of the
intermodal distances beunesn such branches are rouph estimates,
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Figure BB, Structurs of stristed muscls fiber, Thin tilaments ex-
tend from the 2 fines, which are fls1 stiuctures compossd of gra-
tein, The thizs filamente i betwsen the thin Silmends, centered
betwesn F lines. When e muscle contrects, the thin filaments

Figure B8, Thick and thin filaments of muscle. Exiending fram the
thick rmenty sre the doubie hesds of myesin molecuies. These
hieads forr: crossoridges that intecact with sctin moleceies in the
ahin filamants. During contraction the myasin needs stsch, change
orleniation, and detach in such 8 way &x to mowe tha thin fila-
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281284, 1976.) i
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The origin of the single-letter code for the amino acids

The origin of the single-letter code for the amino acids is of historical interest, and in fact, this story may help the student to learn the code. The reason for the
code is simple enough—in the very early days of bicinformatics, the very fastest computers were in fact, rather chinky. Dr. Margaret Qakley Dayhoff. arguably the
founder of the field of bicinformatics, shortened the code from the three letter designations to the single letter code in an effort to reduce the size of the data files
needed to describe the sequence of amino acids in a protein. The listing of amino acids, the three letter and single letter code, and the explanation for the choice of
the single letter is given below. Note that there are 20 amino acids commonly found in proteins, and 26 letters in the alphabet As a result, most of the letters are

used.

To develop a single-letter code for the amino acids, Dr. Dayhoff attempted to make the code as easy to remember as possible. Of course, if the name of each
amino acid began with a different letter, the code would be simple indeed For 6 of the amino acids, the first letter of the name is unique, making the code simple.
These are:

Amino Acid 3 letter code Single letter code Explanation
Cysteine Cys C First letter of the name
Histidine His H First letter of the name
Isoleucine Tle I First letter of the name
Methionine Met M First letter of the name
Serine Ser 5 First letter of the name
Valine Val Vv First letter of the name

For the other amino acids, the first letter of the name is not unique to a single amino acid. so Dr. Dayhoff assigned the letters A, G, L, P and T to the amino acids
Alanine, Glycine, Leucine, Proline and Threonine, respectively, which occur more frequently in proteins than do the other amino acids having the same first letters.

Amino Acid 3 letter code Single letter code Explanation
Alanine Ala A First letter of the name
Glycine Gly G First letter of the name
Leucine Len L First letter of the name
Proline Pro P First letter of the name
Threonine Thr T First letter of the name

Some of the other amino acids are phonetically suggestive.

Amino Acid 3 letter code Single letter code Explanation
Arginine Arg R
Phenylalanine Phe F aRginine
Tvrosine Tvr Y Fenylalanine
Tryptophan Trp W tYrosine

tWiptophan (or, contains Double ring)

http://www.biology.arizona.edu/biochemistry/problem_sets/aa/Dayhoff.html



Comp, Biachem, Physiol, Vol 62R. pp. |-5
@ Pergamon Press Litd 1979 Printed in Great Britain

OFO5-0A%1,T901 1 5-0001 $02.00:4

MINIREVIEW

EVOLUTION OF HOMOLOGOUS PHYSIOLOGICAL
MECHANISMS BASED ON PROTEIN
SEQUENCE DATA

W. C. BARKER and M. O. DAYHOFF

Mational Biomedical Research Foundation, Georgetown University Medical Center,
Washington, D.C. 20007, US.A.

(Received 3 Mav 1978)

Abstract—!. Genetic duplications can give rise to homologous physiological mechanisms that include
structurally related protein components. There are many such examples of related proteins within

the human body.

2. Evolutionary histories showing the origins and subsequent divergences of these distantly related
proteins can be derived from the protein sequences and correlated with the functional characteristics

of these proteins.

3. The hormones related to glucagon provide an example of homology of physiclogical mechanisms
and emergence of new functions subsequent to gene duplications.

4. The proteins related to troponin C illustrate the participation of distantly related proteins in
the same mechanism (muscle contraction), the relationship of proteins characteristic of a specialized
tissue to proteins found in all eukaryote cells, and the correlation of genetic duplications with the
evolutionary appearance of different types of muscle.

HOMOLOGOUS PHYSIOLOGICAL
MECHANISMS

Gene duplications in ancestral species have led to the
presence of distantly related proteins in present-day
organisms. These duplications provided the potential
for major evolutionary advances including the emer-
gence of new physiological mechanisms homologous
(evolutionarily related) to existing mechanisms. A
duplication may involve the entire genome, an indivi-
dual chromosome, part of a chromosome, a single
gene, or part of a gene {Ohno, 1970). Thereafter, the

indanandantlr accomonlating ranastin shanaas sl Aasa

genome in ways that are to a considerable extent
essential for the orderly differentiation and proper
functioning of the mechanism. This genetic organiza-
tion is also a result. of an evolutionary history that
includes different types of duplicatons, point
mutations and crossover events. Entire mechanisms
duplicate when a genome duplicates and perhaps also
when a chromosome duplicates. Duplication of single
genes produces related genes tandemly arranged on
the same chromosome. These genes may evolve to
produce proteins that appear serially during develop-
ment, as do the epsilon, gamma, delta and beta chains
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&
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Orig Life. 1982 Mar;12(1):81-91.

Evolution of major metabolic innovations in the precambrian.
Barnabas J, Schwartz RM, Dayhoff MO.

A combination of the information on the metabolic capabilities
of prokaryotes with a composite phylogenetic tree depicting an
overview of prokaryote evolution based on the sequences of
bacterial ferredoxin, 2Fe-2S ferredoxin, 5S ribosomal RNA, and
c-type cytochromes shows three zones of major metabolic
innovation in the Precambrian. The middle of these, which
reflects the genesis of oxygen-releasing photosynthesis and
aerobic respiration, links metabolic innovations of the anaerobic
stem on the one hand and, on the other, proliferation of aerobic
bacteria and the symbiotic associations leading to the
eukaryotes. We consider especially those pathways where
information on the structure of the enzymes is known.
Halobacterium and Thermoplasma (archaebacteria) do not
belong to a totally independent line on the basis of the
composite tree but branch from the eukaryote cytoplasmic line.



http://www.ncbi.nlm.nih.gov/pubmed?term="Barnabas J"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Schwartz RM"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term="Dayhoff MO"[Author]&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract

ATLAS of
PROTEIN SEQUENCE
and STRUCTURE
1967-68

Margaret O. Dayhoff
Richard V. Eck

SILVER SPRING, MARTLAND 20901

Margaret Dayhoff



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Cancer Gene Meets Its Match�New York Times July 3, 1983�
	An earlier, more subtle discovery…
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	CS-BLAST
	Slide Number 17
	CDD-PSSM
	Experiments
	True vs. false positives for SCOP/ASTRAL 1.75�(9705 queries)
	True vs. false positives for queries from SCOP families of size 1 in CS-BLAST benchmark (1874 queries)
	How often would one find matches?
	Hubris, the Genome Project, and Protein Families
	Slide Number 24
	Slide Number 25
	Earliest Estimates of Number of Protein Families - ~1000 
	Atlas of Protein Sequence and Structure, Vol. 5, Supplement 3 (1978) pg. 10:
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80. Epub 2009 Apr 7.�Inaugural Article: The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages.�Wolf YI, Novichkov PS, Karev GP, Koonin EV, Lipman DJ.�
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

