ISYE 3232 STOCHASTIC MANUFACTURING AND SERVICE SYSTEMS

Credit:
3-0-3

Required:

Prepared:
Prof. Ayhan, Fall 2013

Prerequisite(s):
ISYE 2027

Catalog Description:
Models for describing stochastic movements of parts and materials in manufacturing facilities, supply chains, and inventory systems. Analysis of congestion, delays, machine usage, line balancing, equipment availability, inventory ordering policies, and system crashes. Basics of Markov Chains and queueing theory.

Texts:

Objective
The objective of this course is to develop stochastic modeling techniques and managerial insights for design and control or manufacturing and service systems.

Topical Outline

<table>
<thead>
<tr>
<th>Topics</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete and Continuous-Time Markov Chains: Markov Property, Transition Probabilities, State Classifications, Exponential Distribution, Poisson Process.</td>
<td>8</td>
</tr>
<tr>
<td>Queueing Processes: Basic Definitions, Single Server Systems, Multiple Server Systems, Jackson Networks, Approximations</td>
<td>3</td>
</tr>
<tr>
<td>Production Models: Serial Production Systems, Selecting Distributions, Bottleneck/Throughput Analysis, Line Balancing.</td>
<td>2</td>
</tr>
<tr>
<td>Stochastic Models: Basic Inventory Models Including Newsvendor and Single Period.</td>
<td>2</td>
</tr>
</tbody>
</table>
Outcomes
At the end of this course, students will be able to:

- Model a system when randomness is significant
- Describe how variability affects a system’s behavior and performance
- Apply Markov Chains
- Apply basic inventory models
- Define key concepts in production flow such as bottlenecks, line balancing, and Little’s Law
- Use open and closed Jackson networks
- Maintain throughput in a closed Jackson network and compute corresponding WIP levels

<table>
<thead>
<tr>
<th>Course outcome \ Program Outcomes</th>
<th>a. apply math</th>
<th>b. Design, conduct experiment, analyze, interpret data</th>
<th>c. Design system</th>
<th>d. team</th>
<th>e. problem solving</th>
<th>f. prof/ and ethical responsibilities</th>
<th>g. communication</th>
<th>h. global, eco, enviro, and soc context</th>
<th>i. Life-long learning</th>
<th>j. Contemporary issues</th>
<th>k. use tools for eng. practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model a system when randomness is significant</td>
<td>High</td>
<td>Med</td>
<td>Med</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Describe how variability affects a system’s behavior and performance</td>
<td>High</td>
<td>Med</td>
<td>Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply Markov Chains</td>
<td>High</td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply basic inventory models</td>
<td>Med</td>
<td>Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define key concepts in production flow such as bottlenecks, line balancing, and Little’s Law</td>
<td></td>
<td>High</td>
<td>Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use open and closed Jackson networks</td>
<td>High</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain throughput in a closed Jackson network and compute corresponding WIP levels</td>
<td></td>
<td>Med</td>
<td>Med</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of the important outcomes

1. The students should be able to apply Markov Chains to various kinds of problems.
2. The students should be able to define key concepts in production flow such as bottlenecks, line balancing, and Little’s Law.
3. The students should be able to use open and closed Jackson networks.
4. The students should be able to maintain throughput in a closed Jackson network and compute corresponding WIP levels.
ISyE ABET Student Outcomes a - k

a) an ability to apply knowledge of mathematics, science, and engineering
b) an ability to design and conduct experiments, as well as to analyze and interpret data
c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
d) an ability to function on multidisciplinary teams
e) an ability to identify, formulate, and solve engineering problems
f) an understanding of professional and ethical responsibility
g) an ability to communicate effectively
h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
i) a recognition of the need for, and an ability to engage in life-long learning
j) a knowledge of contemporary issues
k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.