ISyE Seminar- Peter Glynn

Wednesday, September 13, 2017 - 3:00pm to 4:00pm
Groseclose 402

Event Details

TITLE: Implications of Heavy Traffic Limit Theory for Statistical Modeling


Limit theorems have long played an important role in the performance analysis and control of various stochastic models arising in operations management. However, it turns out that these limit theorems often make clear what statistical features of the exogenous inputs to such models are critical in predicting performance, and what features are unimportant. In this talk, we will discuss these limit theorems from a statistical perspective, and describe several  “top down” integer-valued time series that arise naturally in the high-volume arrival modeling context. Such traffic processes arise naturally in many modeling contexts. This work is joint with Zeyu Zheng.

BIO: Peter W. Glynn is the Thomas Ford Professor in the Department of Management Science and Engineering (MS&E) at Stanford University, and also holds a courtesy appointment in the Department of Electrical Engineering. He received his Ph.D in Operations Research from Stanford University in 1982. He then joined the faculty of the University of Wisconsin at Madison, where he held a joint appointment between the Industrial Engineering Department and Mathematics Research Center, and courtesy appointments in Computer Science and Mathematics. In 1987, he returned to Stanford, where he joined the Department of Operations Research. From 1999 to 2005, he served as Deputy Chair of the Department of Management Science and Engineering, and was Director of Stanford's Institute for Computational and Mathematical Engineering from 2006 until 2010. He served as Chair of MS&E from 2011 through 2015. He is a Fellow of INFORMS and a Fellow of the Institute of Mathematical Statistics, and was an IMS Medallion Lecturer in 1995 and INFORMS Markov Lecturer in 2014. He was co-winner of the Outstanding Publication Awards from the INFORMS Simulation Society in 1993, 2008, and 2016, was a co-winner of the Best (Biannual) Publication Award from the INFORMS Applied Probability Society in 2009, and was the co-winner of the John von Neumann Theory Prize from INFORMS in 2010. In 2012, he was elected to the National Academy of Engineering. He was Founding Editor-in-Chief of Stochastic Systems and is currently Editor-in-Chief of Journal of Applied Probability and Advances in Applied Probability. His research interests lie in simulation, computational probability, queueing theory, statistical inference for stochastic processes, and stochastic modeling.