ISyE Department Seminar- Jianqing Fan

Friday, October 22, 2021 - 11:00am to 12:00pm

ISyE Building- Groseclose 119

Title: Understanding Deep Q-learning

Abstract: Despite the great empirical success of deep reinforcement learning, its theoretical foundation is less well understood. In this work, we make the first attempt to theoretically understand the deep Q-network (DQN) algorithm from both algorithmic and statistical perspectives. Specifically, we focus on a slight simplification of DQN that fully captures its key features. Under mild assumptions, we establish the algorithmic and statistical rates of convergence for the action-value functions of the iterative policy sequence obtained by DQN. In particular, the statistical error characterizes the bias and variance that arise from approximating the action-value function using a deep neural network, while the algorithmic error converges to zero at a geometric rate. As a byproduct, our analysis provides justifications for the techniques of experience replay and target network, which are crucial to the empirical success of DQN. Furthermore, as a simple extension of DQN, we propose the Minimax-DQN algorithm for zero-sum Markov game with two players. Borrowing the analysis of DQN, we also quantify the difference between the policies obtained by Minimax-DQN and the Nash equilibrium of the Markov game in terms of both the algorithmic and statistical rates of convergence.

 

Bio: Jianqing Fan is a statistician, financial econometrician, and data scientist. He is Frederick L. Moore '18 Professor of Finance, Professor of Statistics, and Professor of Operations Research and Financial Engineering at the Princeton University where he chaired the department from 2012 to 2015. He is the winner of The 2000 COPSS Presidents' Award, Morningside Gold Medal for Applied Mathematics (2007), Guggenheim Fellow (2009), Pao-Lu Hsu Prize (2013) and Guy Medal in Silver (2014). He got elected to Academician from Academia Sinica in 2012.